题目内容

14.已知F是抛物线x2=4y的焦点,P是抛物线上的一个动点,且A的坐标为(0,-1),则$\frac{|PF|}{|PA|}$的最小值等于$\frac{\sqrt{2}}{2}$.

分析 过点P作PM垂直于准线,M为垂足,则由抛物线的定义可得|PF|=|PM|,则$\frac{|PF|}{|PA|}$=$\frac{|PM|}{|PA|}$=sin∠PAM,∠PAM为锐角,当PA和抛物线相切时$\frac{|PF|}{|PA|}$最小;利用直线的斜率公式、导数的几何意义求得切点的坐标,从而求得$\frac{|PF|}{|PA|}$的最小值.

解答 解:由题意可得,抛物线x2=4y的焦点F(0,1),
准线方程为y=-1.
过点P作PM垂直于准线,M为垂足,
则由抛物线的定义可得|PF|=|PM|,
则 $\frac{|PF|}{|PA|}$=$\frac{|PM|}{|PA|}$=sin∠PAM,∠PAM为锐角;
所以当∠PAM最小时,$\frac{|PF|}{|PA|}$最小,
即当PA和抛物线相切时,$\frac{|PF|}{|PA|}$最小.
设切点P(2$\sqrt{a}$,a),由y=$\frac{1}{4}$x2的导数为y′=$\frac{1}{2}$x,
则PA的斜率为k=$\frac{1}{2}$•2$\sqrt{a}$=$\sqrt{a}$=$\frac{a+1}{2\sqrt{a}}$,
求得a=1,可得P(2,1),
∴|PM|=2,|PA|=2$\sqrt{2}$,
∴sin∠PAM=$\frac{|PM|}{|PA|}$=$\frac{\sqrt{2}}{2}$,
则$\frac{|PF|}{|PA|}$的最小值等于$\frac{\sqrt{2}}{2}$.
故答案为:$\frac{\sqrt{2}}{2}$.

点评 本题主要考查抛物线的定义、性质的简单应用,直线的斜率公式、导数的几何意义,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网