题目内容

17.已知函数y=f(x),f′(1)=$\frac{\sqrt{3}}{6}$,则函数y=f(2x-1)在x=1处的切线的倾斜角为30°.

分析 运用复合函数的求导,可得函数y的导数,求出x=1处切线的斜率,再由直线的斜率公式,即可得到所求倾斜角.

解答 解:函数y=f(2x-1)的导数为y′=2f′(2x-1),
在x=1处的切线的斜率为k=2f′(1)=2×$\frac{\sqrt{3}}{6}$=$\frac{\sqrt{3}}{3}$,
由斜率公式k=tanα(0°≤α<180°),
即tanα=$\frac{\sqrt{3}}{3}$,解得α=30°.
故答案为:30°.

点评 本题考查导数的运用:求切线的斜率,考查直线的斜率公式,正确求导是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网