题目内容
定义在R上的函数
同时满足以下条件:
①
在(0,1)上是减函数,在(1,+∞)上是增函数;
②
是偶函数;
③
在x=0处的切线与直线y=x+2垂直.
(1)求函数
的解析式;
(2)设g(x)=
,若存在实数x∈[1,e],使g(x)<
,求实数m的取值范围。
①
②
③
(1)求函数
(2)设g(x)=
(1) f(x)=
x3 x+3, (2) m>2e e3
试题分析:(1)三个条件,三个未知数,本题就是通过条件列方程组解参数,第一个条件说的是单调性,实质是导数,即
试题解析:解:(1)f′(x)=3ax2+2bx+c,∵f(x)在(0,1)上是减函数,在(1,+∞)上是增函数,
∴f′(1)=3a+2b+c=0 ①
由f′(x)是偶函数得:b=0 ②
又f(x)在x=0处的切线与直线y=x+2垂直,f′(0)=c= 1 ③
由①②③得:a=
(2)由已知得:存在实数x∈[1,e],使lnx
即存在x∈[1,e],使m>xlnx x3+x 6分
设M(x)=xlnx x3+x,x∈[1,e],则M′(x)=lnx 3x2+2 8分
设H(x)=lnx 3x2+2,则H′(x)=
∴M(x)在[1,e]上递减,
∵x∈[1,e],∴H′(x)<0,即H(x)在[1,e]上递减
于是,H(x)≤H(1),即H(x)≤ 1<0,即M′(x)<0
∴M(x)≥M(e)=2e e3
于是有m>2e e3为所求. 12分
练习册系列答案
相关题目