题目内容

若定义域为(-∞,0)∪(0,+∞),f(x)在(0,+∞)上的图象如图所示,则不等式f(x)f′(x)>0的解集是


  1. A.
    (-∞,-1)∪(0,1)
  2. B.
    (-1,0)∪(1,+∞)
  3. C.
    (-∞,-1)∪(1,+∞)
  4. D.
    (-1,0)∪(0,1)
B
分析:本题考查的知识点是函数奇偶性及单调性,由f(x)为偶函数,我们可以根据偶函数的性质--偶函数的图象关于Y轴对称,判断出函数图象在Y轴左侧的情况,然后结合导数的意义,不难求出等式f(x)f′(x)>0的解集.
解答:解:由图可知:
f(x)在区间(0,+∞)上单调递增,
则在区间(0,+∞)上f'(x)>0.
又由f(x)为偶函数.
则f(x)在区间(-∞,0)上单调递减,
则在区间(-∞,0)上f'(x)<0.
以由f(-1)=f(1)=0可得
在区间(-∞,-1)上f'(x)<0,f(x)>0.
在区间(-1,0)上f'(x)<0,f(x)<0.
在区间(0,1)上f'(x)>0,f(x)<0.
在区间(1,+∞)上f'(x)>0,f(x)>0.
故不等式f(x)f′(x)>0的解集为(-1,0)∪(1,+∞)
故选B
点评:利用导数研究函数的单调性比用函数单调性的定义要方便,f′(x)>0(或f′(x)<0)仅是f(x)在某个区间上为增函数(或减函数),反之,f(x)在某个区间上为增函数(或减函数),则f′(x)>0(或f′(x)<0).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网