题目内容
16.(x2+x+1)(1-x)6展开式中x2的系数为10.分析 (x2+x+1)(1-x)6=(x2+x+1)(1-6x+${∁}_{6}^{2}{x}^{2}$+…)即可得出.
解答 解:(x2+x+1)(1-x)6=(x2+x+1)(1-6x+${∁}_{6}^{2}{x}^{2}$+…)
展开式中x2的系数为1-6+${∁}_{6}^{2}$=10.
故答案为:10.
点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
11.小明同学在寒假社会实践活动中,对白天平均气温与某家奶茶店的A品牌饮料销量之间的关系进行了分析研究,他分别记录了1月11日至1月15日的白天气温x(°C)与该奶茶店的A品牌饮料销量y(杯),得到如下表数据:
(Ⅰ)若先从这五组数据中抽出2组,求抽出的2组书记恰好是相邻2天数据的概率;
(Ⅱ)请根据所给五组书记,求出y关于x的线性回归方程式$\widehaty=\widehatbx+\widehata$.
(Ⅲ)根据(Ⅱ)所得的线性回归方程,若天气预报1月16号的白天平均气温为7(℃),请预测该奶茶店这种饮料的销量.
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x)
| 日期 | 1月11日 | 1月12日 | 1月13日 | 1月14日 | 1月15日 |
| 平均气温x(℃) | 9 | 10 | 12 | 11 | 8 |
| 销量y(杯) | 23 | 25 | 30 | 26 | 21 |
(Ⅱ)请根据所给五组书记,求出y关于x的线性回归方程式$\widehaty=\widehatbx+\widehata$.
(Ⅲ)根据(Ⅱ)所得的线性回归方程,若天气预报1月16号的白天平均气温为7(℃),请预测该奶茶店这种饮料的销量.
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x)
1.已知点M在角θ终边的延长线上,且|OM|=2,则M的坐标为( )
| A. | (2cosθ,2sinθ) | B. | (-2cosθ,2sinθ) | C. | (-2cosθ,-2sinθ) | D. | (2cosθ,-2sinθ) |
8.在△ABC中,若sinA:sinB:sinC=2:3:4,则最大角的余弦值为( )
| A. | $\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $-\frac{1}{4}$ |
5.
执行右面的程序框图,如果输入m=72,n=30,则输出的n是( )
| A. | 12 | B. | 6 | C. | 3 | D. | 0 |