题目内容
【题目】某上市股票在30天内每股的交易价格
(元)与时间
(天)组成有序数对
,点
落在图中的两条线段上.
![]()
该股票在30天内的日交易量
(万股)与时间
(天)的部分数据如下表所示:
第 | 4 | 10 | 16 | 22 |
| 36 | 30 | 24 | 18 |
(1)根据提供的图象,写出该股票每股交易价格
(元)与时间
(天)所满足的函数关系式;
(2)根据表中数据,写出日交易量
(万股)与时间
(天)的一次函数关系式;
(3)用
(万元)表示该股票日交易额,写出
关于
的函数关系式,并求在这30天内第几天日交易额最大,最大值为多少?
【答案】见解析
【解析】(1)当
时,设,![]()
由图象可知,此函数的图象过点
和
,故
,解得
,
.(2分)
同理,可求得当
时,
.
.(4分)
(2)设,把所给表中任意两组数据代入可求得![]()
,![]()
,
,
.(7分)
(3)因为日交易额(万元)=日交易量![]()
(万股)![]()
每股交易价格![]()
(元),![]()
.(9分)
当
,
时,当时,![]()
万元;
当
,
时,
,
故在30天中的第15天日交易额最大,为125万元.(12分)
【题目】某保险公司有一款保险产品的历史收益率(收益率
利润
保费收入)的频率分布直方图如图所示:
(1)试估计这款保险产品的收益率的平均值;
(2)设每份保单的保费在20元的基础上每增加
元,对应的销量为
(万份).从历史销售记录中抽样得到如下5组
与
的对应数据:
| 25 | 30 | 38 | 45 | 52 |
销量为 | 7.5 | 7.1 | 6.0 | 5.6 | 4.8 |
由上表,知
与
有较强的线性相关关系,且据此计算出的回归方程为
.
![]()
(ⅰ)求参数
的值;
(ⅱ)若把回归方程
当作
与
的线性关系,用(1)中求出的收益率的平均值作为此产品的收益率,试问每份保单的保费定为多少元时此产品可获得最大利润,并求出最大利润.注:保险产品的保费收入
每份保单的保费
销量.
【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 |
储蓄存款 | 5 | 6 | 7 | 8 | 10 |
为了研究计算的方便,工作人员将上表的数据进行了处理,
,
得到下表2:
时间代号 | 1 | 2 | 3 | 4 | 5 |
| 0 | 1 | 2 | 3 | 5 |
(Ⅰ)求
关于
的线性回归方程;
(Ⅱ)通过(Ⅰ)中的方程,求出
关于
的回归方程;
(Ⅲ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?
(附:对于线性回归方程![]()
![]()
)