题目内容
数列1,1+2,1+2+4,…,1+2+22+…+2n-1,…的前n项和Sn>1020,那么n的最小值是( )
(A)7 (B)8 (C)9 (D)10
D解析:an=1+2+22+…+2n-1=2n-1.
∴Sn=(21-1)+(22-1)+…+(2n-1)
=(21+22+…+2n)-n
=2n+1-n-2.
∴S9=1013<1020,S10=2036>1020.
∴Sn>1020,n的最小值是10.
练习册系列答案
相关题目