题目内容
18.(x2-x+2)5的展开式中x3的系数为( )| A. | -20 | B. | -200 | C. | -40 | D. | -400 |
分析 先求得二项式展开式的通项公式,再令x的幂指数等于3,求得r、r′的值,即可求得x3项的系数.
解答 解:式子(x2-x+2)5 =[(x2-x)+2]5的展开式的通项公式为Tr+1=${C}_{5}^{r}$•(x2-x)5-r•2r,
对于(x2-x)5-r,它的通项公式为Tr′+1=(-1)r′•${C}_{5-r}^{r′}$•x10-2r-r′,
其中,0≤r′≤5-r,0≤r≤5,r、r′都是自然数.
令10-2r-r′=3,可得 $\left\{\begin{array}{l}{r=2}\\{r′=3}\end{array}\right.$,或$\left\{\begin{array}{l}{r=3}\\{r′=1}\end{array}\right.$,
故x3项的系数为${C}_{5}^{2}$•22•(-${C}_{5}^{3}$)+${C}_{5}^{3}$•23•(-${C}_{2}^{1}$)=-200,
故选:B.
点评 本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.
练习册系列答案
相关题目
9.已知直线l∥平面α,m为平面α内任一直线,则直线l与直线m的位置关系是( )
| A. | 平行 | B. | 异面 | C. | 相交 | D. | 平行或异面 |
6.
某学校一个生物兴趣小组对学校的人工湖中养殖的某种鱼类进行观测研究,在饲料充足的前提下,兴趣小组对饲养时间x(单位:月)与这种鱼类的平均体重y(单位:千克)得到一组观测值,如下表:
(1)在给出的坐标系中,画出关于x、y两个相关变量的散点图.
(2)请根据上表提供的数据,用最小二乘法求出变量y关于变量x的线性回归直线方程$\hat y=\widehatbx+\hat a$.
(3)预测饲养满12个月时,这种鱼的平均体重(单位:千克).
(参考公式:$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{({\overline x})}^2}}}\hat$,$\hat a=\overline y-b\overline x$,$n{(\overline x)^2}=45$,$n\overline x\overline y=24$,$\sum_{i=1}^5{x_i}{y_i}=29.8$,$\sum_{i=1}^5{x_i^2}=55$.
(1)在给出的坐标系中,画出关于x、y两个相关变量的散点图.
| xi(月) | 1 | 2 | 3 | 4 | 5 |
| yi(千克) | 0.5 | 0.9 | 1.7 | 2.1 | 2.8 |
(3)预测饲养满12个月时,这种鱼的平均体重(单位:千克).
(参考公式:$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{({\overline x})}^2}}}\hat$,$\hat a=\overline y-b\overline x$,$n{(\overline x)^2}=45$,$n\overline x\overline y=24$,$\sum_{i=1}^5{x_i}{y_i}=29.8$,$\sum_{i=1}^5{x_i^2}=55$.
3.在△OAB中,O为直角坐标系的原点,A,B的坐标分别为A(3,4),B(-2,y),向量$\overrightarrow{AB}$与x轴平行,则向量$\overrightarrow{OA}$与$\overrightarrow{AB}$所成的余弦值是( )
| A. | -$\frac{\sqrt{3}}{5}$ | B. | $\frac{\sqrt{3}}{5}$ | C. | -$\frac{3}{5}$ | D. | $\frac{3}{5}$ |