题目内容

20.已知抛物线y2=4x焦点为F,过焦点F的直线交抛物线于A,B,O为坐标原点,若△AOB的面积为4,则弦|AB|=(  )
A.6B.8C.12D.16

分析 设出直线方程,求出A,B两点的纵坐标的差,利用△AOB的面积.求出直线的斜率,然后求解|AB|,

解答 解:抛物线y2=4x焦点为F(1,0),
设过焦点F的直线为:y=k(x-1),
可得$\left\{\begin{array}{l}{{y}^{2}=4x}\\{y=k(x-1)}\end{array}\right.$,可得y2-$\frac{4}{k}$y-4=0,
yA+yB=$\frac{4}{k}$,yAyB=-4,
|yA-yB|=$\sqrt{(\frac{4}{k})^{2}+16}$,
△AOB的面积为4,
可得:$\frac{1}{2}×1×$|yA-yB|=4,
可得:$\sqrt{(\frac{4}{k})^{2}+16}$=8,解得k=$±\frac{\sqrt{3}}{3}$.
|AB|=$\sqrt{({y}_{A}-{y}_{B})^{2}+(\frac{{|y}_{A}-{y}_{B}|}{k})^{2}}$=$\sqrt{64+64×3}$=16.
故选:D.

点评 本题考查抛物线的定义,考查三角形的面积的计算,确定抛物线的弦长是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网