题目内容

若等比数列{an}的各项均为正数,且a3a8+a5a6=2e5,则lna1+lna2+…+lna10=(  )
A、20B、25C、30D、50
考点:数列的求和
专题:等差数列与等比数列
分析:设等比数列{an}的首项为a1,公比为q,根据已知可得a12q9=e5,从而可求lna1+lna2+…+lna10=lna1×a2×…a10=lna110q1+2+..+9=lne55=25.
解答: 解:设等比数列{an}的首项为a1,公比为q,
a3a8+a5a6=2e5⇒a1q2×a1q7+a1q4a1q5=2e5a12q9=e5
故lna1+lna2+…+lna10=lna1×a2×…a10=lna110q1+2+..+9=lna110q45=ln(a12q9)5=lne55=25
故选:B.
点评:本题主要考察了等比数列的求和,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网