题目内容
6.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,b=$\sqrt{3}$,A=$\frac{π}{6}$,则角B等于( )| A. | $\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$或$\frac{2π}{3}$ | D. | $\frac{π}{6}$或$\frac{5π}{6}$ |
分析 由题意和正弦定理求出sinB的值,由内角的范围和特殊角的三角函数值求出角B.
解答 解:∵a=1,b=$\sqrt{3}$,A=$\frac{π}{6}$,
∴由正弦定理得,$\frac{a}{sinA}=\frac{b}{sinB}$,
则sinB=$\frac{b•sinA}{a}$=$\frac{\sqrt{3}×\frac{1}{2}}{1}$=$\frac{\sqrt{3}}{2}$,
又∵0<B<π,b>a,∴B=$\frac{π}{3}$或$\frac{2π}{3}$,
故选C.
点评 本题考查正弦定理,以及特殊角的三角函数值的应用,属于基础题.
练习册系列答案
相关题目
1.某中学数学老师分别用两种不同教学方式对入学数学平均分和优秀率都相同的甲、乙两个高一新班(人数均为20人)进行教学(两班的学生学习)(两班的学生学习数学勤奋程度和自觉性都一样).如图所示茎叶图如.

(1)现从乙班数学成绩不低于80分的同学中随机抽取两名同学,求至少有一名成绩为90分的同学被抽中的概率;
(2)学校规定:成绩不低于75分的为优秀.请填写下面的2×2表,并判断有多大把握认为“成绩优秀与教学方式有关”.
附参考公式及数据:
(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$)
(1)现从乙班数学成绩不低于80分的同学中随机抽取两名同学,求至少有一名成绩为90分的同学被抽中的概率;
(2)学校规定:成绩不低于75分的为优秀.请填写下面的2×2表,并判断有多大把握认为“成绩优秀与教学方式有关”.
| 甲班 | 乙班 | 合计 | |
| 优秀 | 14 | 8 | 22 |
| 不优秀 | 6 | 12 | 18 |
| 合计 | 20 | 20 | 40 |
| P(x2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.79 | 10.828 |
11.设复数z满足(1+i)z=|1-i|(i为虚数单位),则$\overline z$=( )
| A. | 1+i | B. | 1-i | C. | $\frac{{\sqrt{2}}}{2}-\frac{{\sqrt{2}}}{2}i$ | D. | $\frac{{\sqrt{2}}}{2}+\frac{{\sqrt{2}}}{2}i$ |