ÌâÄ¿ÄÚÈÝ
14£®ÒÑÖªÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬¶ÔÓÚµãP£¨x0£¬y0£©¡¢Ö±Ïßl£ºax+by+c=0£¬ÎÒÃdzƦÄ=$\frac{a{x}_{0}+b{y}_{0}+c}{\sqrt{{a}^{2}+{b}^{2}}}$ΪµãP£¨x0£¬y0£©µ½Ö±Ïßl£ºax+by+c=0µÄ·½Ïò¾àÀ룮£¨1£©ÉèÍÖÔ²$\frac{{x}^{2}}{4}$+y2=1ÉϵÄÈÎÒâÒ»µãP£¨x£¬y£©µ½Ö±Ïßl£ºx-2y=0£¬l£ºx+2y=0µÄ·½Ïò¾àÀë·Ö±ðΪ¦Ä1¡¢¦Ä2£¬Çó¦Ä1¦Ä2µÄȡֵ·¶Î§£®
£¨2£©ÉèµãE£¨-t£¬0£©¡¢F£¨t£¬0£©µ½Ö±Ïßl£ºxcos¦Á+2ysin¦Á-2=0µÄ·½³Ì¾àÀë·Ö±ðΪ¦Ç1¡¢¦Ç2£¬ÊÔÎÊÊÇ·ñ´æÔÚʵÊýt£¬¶ÔÈÎÒâµÄ¦Á¶¼ÓЦÇ1¦Ç2=1ºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ötµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨3£©ÒÑÖªÖ±Ïßl£ºmx-y+n=0ºÍÍÖÔ²H£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬ÉèÍÖÔ²HµÄÁ½¸ö½¹µãF1£¬F2µ½Ö±ÏßlµÄ·½Ïò¾àÀë·Ö±ðΪ¦Ë1£¬¦Ë2£¬Âú×ã¦Ë1¦Ë2£¾b2£¬ÇÒÖ±ÏßlÓëxÖáµÄ½»µãΪA£¬ÓëyÖáµÄ½»µãΪB£¬ÊԱȽÏ|AB|µÄ³¤Óëa+bµÄ´óС£®
·ÖÎö £¨1£©ÉèP£¨x£¬y£©Îª£¨2cos¦Á£¬sin¦Á£©£¬0¡Ü¦Á£¼2¦Ð£¬ÓÉж¨ÒåÇóµÃ¦Ä1¡¢¦Ä2£¬ÔÙÓɶþ±¶½ÇµÄÓàÏÒ¹«Ê½£¬½áºÏÓàÏÒº¯ÊýµÄÖµÓò¼´¿ÉµÃµ½ËùÇó·¶Î§£»
£¨2£©ÓÉж¨Òå¿ÉµÃΪ¦Ç1¡¢¦Ç2£¬¼ÙÉè´æÔÚt£¬½áºÏºãµÈʽµÄ֪ʶ£¬Í¬½ÇµÄƽ·½¹ØÏµ£¬¿ÉµÃtµÄÖµ£»
£¨3£©ÓÉж¨Òå¿ÉµÃ¦Ë1£¬¦Ë2£¬´úÈë¦Ë1¦Ë2£¾b2£¬»¯¼òÕûÀí¿ÉµÃn2£¾b2+m2a2£¬ÔÙÓÉÁ½µãµÄ¾àÀ빫ʽ£¬ÇóµÃ|AB|2=$\frac{{n}^{2}}{{m}^{2}}$+n2£¬ÔËÓò»µÈʽµÄÐÔÖʺͻù±¾²»µÈʽ£¬¼´¿ÉµÃµ½´óС¹ØÏµ£®
½â´ð ½â£º£¨1£©ÉèP£¨x£¬y£©Îª£¨2cos¦Á£¬sin¦Á£©£¬0¡Ü¦Á£¼2¦Ð£¬
ÓÉÌâÒâ¿ÉµÃ¦Ä1=$\frac{x-2y}{\sqrt{1+4}}$£¬¦Ä2=$\frac{x+2y}{\sqrt{1+4}}$£¬
¼´ÓЦÄ1¦Ä2=$\frac{{x}^{2}-4{y}^{2}}{5}$=$\frac{4co{s}^{2}¦Á-4si{n}^{2}¦Á}{5}$=$\frac{4}{5}$cos2¦Á£¬
ÓÉ-1¡Ücos2¦Á¡Ü1£¬¿ÉµÃ¦Ä1¦Ä2µÄ·¶Î§ÊÇ[-$\frac{4}{5}$£¬$\frac{4}{5}$]£»
£¨2£©ÓÉÌâÒâ¿ÉµÃ¦Ç1=$\frac{-tcos¦Á-2}{\sqrt{co{s}^{2}¦Á+4si{n}^{2}¦Á}}$£¬¦Ç2=$\frac{tcos¦Á-2}{\sqrt{co{s}^{2}¦Á+4si{n}^{2}¦Á}}$£¬
¼ÙÉè´æÔÚʵÊýt£¬¶ÔÈÎÒâµÄ¦Á¶¼ÓЦÇ1¦Ç2=1ºã³ÉÁ¢£®
¼´ÓÐ$\frac{4-{t}^{2}co{s}^{2}¦Á}{co{s}^{2}¦Á+4si{n}^{2}¦Á}$=1£¬
¼´Îª4-t2cos2¦Á=cos2¦Á+4sin2¦Á=4-3cos2¦Á£¬
¼´ÓÐt2=3£¬½âµÃt=¡À$\sqrt{3}$£¬
¹Ê´æÔÚ£¬ÇÒt=¡À$\sqrt{3}$£»
£¨3£©ÉèµãF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬
ÓÉÌâÒâ¿ÉµÃ¦Ë1=$\frac{-mc+n}{\sqrt{1+{m}^{2}}}$£¬¦Ë2=$\frac{mc+n}{\sqrt{1+{m}^{2}}}$£¬
¦Ë1¦Ë2£¾b2£¬¼´Îª$\frac{{n}^{2}-{m}^{2}{c}^{2}}{1+{m}^{2}}$£¾b2£¬
¼´ÓÐn2-m2c2£¾b2+b2m2£¬
¼´Îªn2-m2£¨a2-b2£©£¾b2+b2m2£¬
»¯¼ò¿ÉµÃn2£¾b2+m2a2£¬
ÓÉÌâÒâ¿ÉµÃA£¨-$\frac{n}{m}$£¬0£©£¬B£¨0£¬n£©£¬
¿ÉµÃ|AB|=$\sqrt{\frac{{n}^{2}}{{m}^{2}}+{n}^{2}}$£¬
ÓÉ|AB|2=$\frac{{n}^{2}}{{m}^{2}}$+n2£¾$\frac{{b}^{2}+{m}^{2}{a}^{2}}{{m}^{2}}$+b2+m2a2£¬
=a2+b2+$\frac{{b}^{2}}{{m}^{2}}$+m2a2¡Ýa2+b2+2ab=£¨a+b£©2£¬
¼´ÓÐ|AB|£¾a+b£®
µãÆÀ ±¾Ì⿼²éж¨ÒåµÄÀí½âºÍÔËÓ㬿¼²éÍÖÔ²µÄ²ÎÊý·½³ÌµÄÔËÓã¬ÒÔ¼°ºãµÈʽµÄ½áÂۺͻù±¾²»µÈʽµÄÔËÓ㬿¼²éÔËËãºÍÍÆÀíÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | $\frac{1}{2}$ | B£® | $\frac{\sqrt{2}}{2}$ | C£® | 1 | D£® | 0 |