题目内容
已知长方体ABCD-A1B1C1D1中,E为AA1上一点,平面B1CE⊥平面BCE,AB=BC=1,AA1=2.(1)求平面B1CE与平面B1BE所成二面角α的大小;(文科只要求求tanα)
(2)求点A到平面B1CE的距离.
【答案】分析:(1)由长方体的几何特征可得BC⊥平面BB1E,由面面垂直的判定定理可得平面BB1E⊥平面BCE,又由平面B1CE⊥平面BCE,故B1E⊥平面BCE,则∠BEC就是平面B1CE与平面B1BE所成二面角的平面角α.解Rt△CBE可得平面B1CE与平面B1BE所成二面角α的大小
(2)利用等体积示,求三棱锥C-AEB1的体积,解Rt△B1CE,求出其面积,设A到平面B1EC的距离为h,可得答案.
解答:解:(1)∵BC⊥平面BB1E,
∴平面BB1E⊥平面BCE,
又平面B1CE⊥平面BCE,
∴B1E⊥平面BCE,
∴CE⊥B1E,BE⊥B1E
∴∠BEC就是平面B1CE与平面B1BE所成二面角的平面角α.
设∠AEB=β,则∠A1B1E=β
∴AE=ABcotβ=cotβ,
A1E=A1B1•tanβ=tanβ
∵AE+EA1=AA1=2,
∴cotβ+tanβ=2
解得tanβ=1.即AE=A1E=1
在Rt△CBE中,BC=1,BE=
∴tan
.
∴
(2)在三棱锥C-AEB1中,
,从而
在Rt△B1CE中,

设A到平面B1EC的距离为h,则
∵
∴
∴
点评:本题考查的知识点是二面角的平面角及求法,点到平面的距离,其中(1)的关键是求出∠BEC就是平面B1CE与平面B1BE所成二面角的平面角,(2)中几何法求点面距离时,往往是采用等体积法.
(2)利用等体积示,求三棱锥C-AEB1的体积,解Rt△B1CE,求出其面积,设A到平面B1EC的距离为h,可得答案.
解答:解:(1)∵BC⊥平面BB1E,
∴平面BB1E⊥平面BCE,
又平面B1CE⊥平面BCE,
∴B1E⊥平面BCE,
∴CE⊥B1E,BE⊥B1E
∴∠BEC就是平面B1CE与平面B1BE所成二面角的平面角α.
设∠AEB=β,则∠A1B1E=β
∴AE=ABcotβ=cotβ,
A1E=A1B1•tanβ=tanβ
∵AE+EA1=AA1=2,
∴cotβ+tanβ=2
解得tanβ=1.即AE=A1E=1
在Rt△CBE中,BC=1,BE=
∴tan
∴
(2)在三棱锥C-AEB1中,
在Rt△B1CE中,
设A到平面B1EC的距离为h,则
∵
∴
∴
点评:本题考查的知识点是二面角的平面角及求法,点到平面的距离,其中(1)的关键是求出∠BEC就是平面B1CE与平面B1BE所成二面角的平面角,(2)中几何法求点面距离时,往往是采用等体积法.
练习册系列答案
相关题目
已知长方体ABCD-A1B1C1D1,下列向量的数量积一定不为0的是( )

A、
| ||||
B、
| ||||
C、
| ||||
D、
|