题目内容
已知向量
=(-1, cosx),
=(
, sinx).
(1)当
∥
时,求2cos2x-sin2x的值;
(2)求f(x)=(
+
)•
在[-
, 0]上的最大值.
| a |
| b |
| 3 |
| 2 |
(1)当
| a |
| b |
(2)求f(x)=(
| a |
| b |
| b |
| π |
| 2 |
分析:(1)由平行关系易得tanx=-
,然后化要求的式子为正切函数,代入可得;(2)结合三角函数的运算公式易得函数为f(x)=
sin(2x-
)+
,逐步由x的范围可得.
| 3 |
| 2 |
| ||
| 2 |
| π |
| 4 |
| 5 |
| 4 |
解答:解:(1)∵
∥
,
cosx+sinx=0(2分)
∴tanx=-
(4分)
∴2cos2x-sin2x=
=
=
(7分)
(2)∵
+
=(
,cosx+sinx),
∴f(x)=(
+
)•
=
×
+(cosx+sinx)sinx
=
sin2x-
cos2x+
=
sin(2x-
)+
(10分)
∵-
≤x≤0,∴-
≤2x-
≤-
∴-1≤sin(2x-
)≤
,
∴-
+
≤f(x)≤
,
∴f(x)max=
(12分)
| a |
| b |
| 3 |
| 2 |
∴tanx=-
| 3 |
| 2 |
∴2cos2x-sin2x=
| 2cos2x-2sinxcosx |
| sin2x+cos2x |
| 2-2tanx |
| 1+tan2x |
| 20 |
| 13 |
(2)∵
| a |
| b |
| 1 |
| 2 |
∴f(x)=(
| a |
| b |
| b |
| 1 |
| 2 |
| 3 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 5 |
| 4 |
| ||
| 2 |
| π |
| 4 |
| 5 |
| 4 |
∵-
| π |
| 2 |
| 5π |
| 4 |
| π |
| 4 |
| π |
| 4 |
∴-1≤sin(2x-
| π |
| 4 |
| ||
| 2 |
∴-
| ||
| 2 |
| 5 |
| 4 |
| 7 |
| 4 |
∴f(x)max=
| 7 |
| 4 |
点评:本题考查平面向量的平行关系和数量积的运算,涉及三角函数的和差角的公式即取值范围,属中档题.
练习册系列答案
相关题目