题目内容

如图所示,平行六面体ABCD—A1B1C1D1中,以顶点A为端点的三条棱长度都为1,且两

两夹角为60°.

(1)求AC1的长;

(2)求BD1与AC夹角的余弦值.

(1) AC1的长为 (2) AC与BD1夹角的余弦值为


解析:

=a,=b,=c,

则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°,

∴a·b=b·c=c·a=.

(1)||2=(a+b+c)2

=a2+b2+c2+2(a·b+b·c+c·a)

=1+1+1+2×(++)=6,

∴||=,即AC1的长为.

(2)=b+c-a,=a+b,

∴||=,||=,

·=(b+c-a)·(a+b)

=b2-a2+a·c+b·c=1.

∴cos〈,〉==.

∴AC与BD1夹角的余弦值为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网