ÌâÄ¿ÄÚÈÝ
ÉèxÖá¡¢yÖáÕý·½ÏòÉϵĵ¥Î»ÏòÁ¿·Ö±ðΪ| i |
| j |
| OA1 |
| j |
| AnAn+1 |
| i |
| j |
| OB1 |
| i |
| BnBn+1 |
| 3 |
| 4 |
| i |
| OAn |
| OBn |
·ÖÎö£º£¨1£©¸ù¾Ý¢ÙÒÔ¼°ÏòÁ¿¼Ó·¨µÄÈý½ÇÐη¨ÔòÇó³ö
=
+
+¡+
2
+(n-1) (
+
)=£¨n-1£¬n+1£©£¬Í¬ÀíÇó³ö
µÄ×ø±ê£»
£¨2£©ÓÉ£¨1£©¿ÉÖª£ºµãAn£¨n-1£¬n+1£©¶¼ÔÚÖ±Ïßy=x=2ÉÏ£¬µãBn¶¼ÔÚxÖáÉÏ£»¼ÇC£¨-2£¬0£©£¬ÀûÓ÷ָîµÄ·½·¨ÇóËıßÐÎAnBnBn+1An+1µÄÃæ»ýÊÇan=S¡÷CBn+1An+1-S¡÷CAnBn£¬´úÈëÃæ»ý¹«Ê½¼´¿ÉÇóµÃ£»
£¨3£©ÓÉ£¨2£©Öª£ºan+1-an=5+(
)n(n-1)-[5+(
)n(n-2)]=(
)n(
)£¬·ÖÀàÌÖÂÛ¼´¿ÉÇóµÃ½áÂÛ£®
| OAn |
| OA1 |
| A1A2 |
| AnAn+1 |
| j |
| i |
| j |
| OBn |
£¨2£©ÓÉ£¨1£©¿ÉÖª£ºµãAn£¨n-1£¬n+1£©¶¼ÔÚÖ±Ïßy=x=2ÉÏ£¬µãBn¶¼ÔÚxÖáÉÏ£»¼ÇC£¨-2£¬0£©£¬ÀûÓ÷ָîµÄ·½·¨ÇóËıßÐÎAnBnBn+1An+1µÄÃæ»ýÊÇan=S¡÷CBn+1An+1-S¡÷CAnBn£¬´úÈëÃæ»ý¹«Ê½¼´¿ÉÇóµÃ£»
£¨3£©ÓÉ£¨2£©Öª£ºan+1-an=5+(
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 5-n |
| 4 |
½â´ð£º½â£º£¨1£©
=
+
+¡+
=2
+(n-1) (
+
)=£¨n-1£¬n+1£©£¬
=
+
+¡+
=2
[1+
+(
)2 +¡+(
)N-1]
=8
[1-(
)n]=£¨8[1-(
)n]£¬0£©£»
£¨2£©ÓÉ£¨1£©¿ÉÖª£ºµãAn£¨n-1£¬n+1£©¶¼ÔÚÖ±Ïßy=x=2ÉÏ£¬µãBn¶¼ÔÚxÖáÉÏ£»
¼ÇC£¨-2£¬0£©£¬
Ôòan=SAnBnBn+1 An+1=S¡÷CBn+1An+1-S¡÷CAnBn
=
[10-8(
)n]-(n+1)=5+(
)n(n-2)£¬
¡àan=5+(
)n(n-2)£¬
£¨3£©ÓÉ£¨2£©Öª£ºan+1-an=5+(
)n(n-1)-[5+(
)n(n-2)]=(
)n(
)£¬
µ±n=5ʱ£¬a5=a6£»
µ±n¡Ý6ʱ£¬£ºan+1-an£¼0
ËùÒÔ´æÔÚ×îСµÄ×ÔÈ»ÊýN=5£¬
µ±n£¾NʱºãÓУºan+1£¼an³ÉÁ¢£®
| OAn |
| OA1 |
| A1A2 |
| AnAn+1 |
| j |
| i |
| j |
| OBn |
| OB1 |
| B1B2 |
| BnBn+1 |
| i |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
=8
| i |
| 3 |
| 4 |
| 3 |
| 4 |
£¨2£©ÓÉ£¨1£©¿ÉÖª£ºµãAn£¨n-1£¬n+1£©¶¼ÔÚÖ±Ïßy=x=2ÉÏ£¬µãBn¶¼ÔÚxÖáÉÏ£»
¼ÇC£¨-2£¬0£©£¬
Ôòan=SAnBnBn+1 An+1=S¡÷CBn+1An+1-S¡÷CAnBn
=
| 1 |
| 2 |
| 3 |
| 4 |
| 3 |
| 4 |
¡àan=5+(
| 3 |
| 4 |
£¨3£©ÓÉ£¨2£©Öª£ºan+1-an=5+(
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 5-n |
| 4 |
µ±n=5ʱ£¬a5=a6£»
µ±n¡Ý6ʱ£¬£ºan+1-an£¼0
ËùÒÔ´æÔÚ×îСµÄ×ÔÈ»ÊýN=5£¬
µ±n£¾NʱºãÓУºan+1£¼an³ÉÁ¢£®
µãÆÀ£º´ËÌâÊǸöÖеµÌ⣮¿¼²éÏòÁ¿ÓëÊýÁеÄ×ۺϣ¬Ö÷Òª¿¼²éÁËÏòÁ¿µÄ¼Ó·¨µÄÈý½ÇÐη¨ÔòºÍ×ø±ê±íʾ£¬ÒÔ¼°ÊýÁбȽϴóСµÄ·½·¨£®ÆäÖÐÎÊÌ⣨3£©ÊÇÒ»¸ö¿ª·ÅÐÔÎÊÌ⣬¿¼²éÁËͬѧÃÇ¹Û²ì¡¢ÍÆÀíÒÔ¼°´´ÔìÐԵطÖÎöÎÊÌâ¡¢½â¾öÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿