题目内容
设x轴、y轴正方向上的单位向量分别是
、
,坐标平面上点An、Bn(n∈N*)分别满足下列两个条件:
①
=4
且
n=
(n∈N*,n≥2);
②
=
+
且
=-
(n∈N*,n≥2).(其中O为坐标原点)
(I)求向量
及向量
的坐标;
(II)设an=
•
,求an的通项公式并求an的最小值;
(III)对于(Ⅱ)中的an,设数列bn=
,Sn为bn的前n项和,证明:对所有n∈N*都有Sn<
.
| i |
| j |
①
| OA1 |
| j |
| An-1A |
| i |
②
| OB1 |
| i |
| 1 |
| 2 |
| j |
| Bn-1Bn |
| 1 |
| n(n+1) |
| j |
(I)求向量
| OAn |
| OBn |
(II)设an=
| OAn |
| OBn |
(III)对于(Ⅱ)中的an,设数列bn=
sin
| ||||
| (n+1)an-6n+3 |
| 89 |
| 48 |
分析:(I)利用向量加法的三角形法则的推广,及已知条件①
=4
且
n=
(n∈N*,n≥2);
②
=
+
且
=-
(n∈N*,n≥2).得到
及
的坐标;
(II)an=
•
=n-1+
,利用基本不等式可求an的最小值;
(III)当n=1,2,3,…时,sin
cos
=1,0,1,0,…从而Sn=b1+b3+b5+b7+…,根据数列bn=
,从而可得bn=
<
=
=
[
-
],进而可证.
| OA1 |
| j |
| An-1A |
| i |
②
| OB1 |
| i |
| 1 |
| 2 |
| j |
| Bn-1Bn |
| 1 |
| n(n+1) |
| j |
| OAn |
| OBn |
(II)an=
| OAn |
| OBn |
| 4 |
| n+1 |
(III)当n=1,2,3,…时,sin
| nπ |
| 2 |
| (n-1)π |
| 2 |
sin
| ||||
| (n+1)an-6n+3 |
| 1 |
| n2-6n+6 |
| 1 |
| n2-6n+5 |
| 1 |
| (n-1)(n-5) |
| 1 |
| 4 |
| 1 |
| (n-5) |
| 1 |
| (n-1) |
解答:解:(I)由题意,
=
+
+…+
=(n-1,4)
=
+
+…+
=(
+
)-(
-
+…+
-
)
=
+
=(1,
);
(II)an=
•
=n-1+
;
an=n-1+
=n+1+
-2≥2
即an的最小值为a1=2
(III)当n=1,2,3,…时,sin
cos
=1,0,1,0,…
从而Sn=b1+b3+b5+b7+…,又bn=
,
b1=1,b3=-
,b5=1,当n≥7时,bn=
<
=
=
[
-
]∴Sn=b1+b3+b5+b7+…=b1+b3+b5+[b7+b11+b15+…]+[b9+b13+b17+…]<1-
+1+
[
-
+
-
+…]+
[
-
+
-
+…]<
+
+
=
| OAn |
| OA1 |
| A1A2 |
| An-1An |
| OBn |
| OB1 |
| B1B2 |
| Bn-1Bn |
| i |
| 1 |
| 2 |
| j |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| j |
| i |
| 1 |
| n+1 |
| j |
| 1 |
| n+1 |
(II)an=
| OAn |
| OBn |
| 4 |
| n+1 |
an=n-1+
| 4 |
| n+1 |
| 4 |
| n+1 |
即an的最小值为a1=2
(III)当n=1,2,3,…时,sin
| nπ |
| 2 |
| (n-1)π |
| 2 |
从而Sn=b1+b3+b5+b7+…,又bn=
|
|
| 1 |
| 3 |
| 1 |
| n2-6n+6 |
| 1 |
| n2-6n+5 |
| 1 |
| (n-1)(n-5) |
| 1 |
| 4 |
| 1 |
| (n-5) |
| 1 |
| (n-1) |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 6 |
| 1 |
| 10 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 16 |
| 5 |
| 3 |
| 1 |
| 8 |
| 1 |
| 16 |
| 89 |
| 48 |
点评:本题考查解决数列的问题关键是求出数列的通项,根据通项的特点,选择合适的方法来解决,在高考题中数列出现在解答题中,属于难题.
练习册系列答案
相关题目