题目内容
19.已知A,B是球O的球面上两点,∠AOB=60°,C为该球面上的动点,若三棱锥O-ABC体积的最大值为$\frac{{16\sqrt{3}}}{3}$,则球O的表面积为( )| A. | 36π | B. | 64π | C. | 144π | D. | 256π |
分析 当点C位于垂直于面AOB的直径端点时,三棱锥O-ABC的体积最大,利用三棱锥O-ABC体积的最大值为$\frac{{16\sqrt{3}}}{3}$,求出半径,即可求出球O的表面积.
解答
解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O-ABC的体积最大,设球O的半径为R,此时VO-ABC=VC-AOB=$\frac{1}{3}×\frac{1}{2}{R}^{2}×\frac{\sqrt{3}}{2}$×R=$\frac{{16\sqrt{3}}}{3}$,
故R=4,则球O的表面积为4πR2=64π,
故选B.
点评 本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O-ABC的体积最大是关键.
练习册系列答案
相关题目
10.“a=-5”是“直线y=x+4与圆(x-a)2+(y-3)2=8相切”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
7.线段x-2y+1=0(-1≤x≤3)的垂直平分线方程为( )
| A. | x+2y-3=0 | B. | 2x+y-3=0 | C. | 2x+y-1=0 | D. | 2x-y-1=0 |
8.(log29)•(log34)等于( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | 4 |