题目内容

4.求解方程$\sqrt{x+y-2}$+|x+2y|=0.

分析 根据题意$\sqrt{x+y-2}$≥0,|x+2y|≥0,把原方程化为$\left\{\begin{array}{l}{x+y-2=0}\\{x+2y=0}\end{array}\right.$,求出x、y的值即可.

解答 解:∵$\sqrt{x+y-2}$≥0,|x+2y|≥0,
且$\sqrt{x+y-2}$+|x+2y|=0,
∴$\left\{\begin{array}{l}{x+y-2=0}\\{x+2y=0}\end{array}\right.$,
解得x=4,y=-2;
经验证,x=4,y=-2是原方程的解.

点评 本题考查了根式与绝对值的概念与应用问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网