题目内容
直线
x-y+2=0与2x+1=0的夹角为
.
| 3 |
| π |
| 6 |
| π |
| 6 |
分析:由题意可得直线
x-y+2=0的倾斜角α=
,结合直线2x+1=0与x轴垂直可得直线
x-y+2=0与2x+1=0的夹角
| 3 |
| π |
| 3 |
| 3 |
解答:解:直线
x-y+2=0的斜率K=
∴直线的倾斜角α=
由直线2x+1=0与x轴垂直可得直线
x-y+2=0与2x+1=0的夹角为
故答案为:
| 3 |
| 3 |
∴直线的倾斜角α=
| π |
| 3 |
由直线2x+1=0与x轴垂直可得直线
| 3 |
| π |
| 6 |
故答案为:
| π |
| 6 |
点评:本题主要考查了直线的倾斜角与直线夹角的求解,属于基础试题,但注意本题不能直接利用夹角公式
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|
直线
x+y-2=0截圆x2+y2=4得到的弦长为( )
| 3 |
| A、1 | ||
B、2
| ||
C、2
| ||
| D、2 |