题目内容
13.过双曲线${x^2}-\frac{y^2}{8}=1$的右支上一点P分别向圆C1:(x+3)2+y2=4和圆C2:(x-3)2+y2=1作切线,切点分别为A,B,则|PA|2-|PB|2的最小值为9.分析 求得两圆的圆心和半径,设双曲线x2-$\frac{{y}^{2}}{8}$=1的左右焦点为F1(-3,0),F2(3,0),连接PF1,PF2,F1A,F2B,运用勾股定理和双曲线的定义,结合三点共线时,距离之和取得最小值,计算即可得到所求值.
解答 9
解:圆C1:(x+3)2+y2=4的圆心为(-3,0),半径为r1=2;
圆C2:(x-3)2+y2=1的圆心为(3,0),半径为r2=1,
设双曲线x2-$\frac{{y}^{2}}{8}$=1的左右焦点为F1(-3,0),F2(3,0),
连接PF1,PF2,F1A,F2B,可得
|PA|2-|PB|2=(|PF1|2-r12)-(|PF2|2-r22)
=(|PF1|2-4)-(|PF2|2-1)
=|PF1|2-|PF2|2-3=(|PF1|-|PF2|)(|PF1|+|PF2|)-3
=2a(|PF1|+|PF2|-3=2(|PF1|+|PF2|)-3≥2•2c-3=2•6-3=9.
当且仅当P为右顶点时,取得等号,
即最小值9.
故答案为:9
点评 本题考查最值的求法,注意运用双曲线的定义和圆的方程,考查三点共线的性质,以及运算能力,属于中档题.
练习册系列答案
相关题目
4.设集合A={x|x2-2x-3<0},B={x|y=ln(2-x)},则A∩B=( )
| A. | {x|-1<x<3} | B. | {x|-1<x<2} | C. | {x|-3<x<2} | D. | {x|1<x<2} |
8.一个几何体的三视图如右图所示,其中俯视图是一个正三角形及其内切圆,则该几何体的体积为( )
| A. | $16\sqrt{3}-\frac{16π}{3}$ | B. | $\frac{{16\sqrt{3}-16π}}{3}$ | C. | $8\sqrt{3}-\frac{8π}{3}$ | D. | $\frac{{8\sqrt{3}-8π}}{3}$ |
5.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦点F(-c,0)(c>0)作圆${x^2}+{y^2}=\frac{a^2}{4}$的切线,切点为E,延长FE交双曲线右支于点P.若$\overrightarrow{OP}=2\overrightarrow{OE}-\overrightarrow{OF}$,则双曲线的渐近线方程为( )
| A. | $\sqrt{10}x±2y=0$ | B. | $2x±\sqrt{10}y=0$ | C. | $\sqrt{6}x±2y=0$ | D. | $2x±\sqrt{6}y=0$ |