题目内容
设{an}是正数数列,其前n项和Sn满足Sn=| 1 |
| 4 |
(1)求a1的值;
(3)求数列{an}的通项公式;
(5)对于数列{bn},Tn为数列{bn}的前n项和,令bn=
| 1 |
| sn |
分析:(1)把n=1代入递推公式sn=
(an-1)(an+3)可求a1的值
(2)由Sn=
(an+1)(an+3),可得Sn-1=
(an-1-1)(an-1+3)(n≥2)
两式相减结合an>0的条件整理可得an-an-1=2,从而利用等差数列的通项公式求出an
(3)由(2)中求出Sn,代入求bn=
,利用裂项求和求出Tn
| 1 |
| 4 |
(2)由Sn=
| 1 |
| 4 |
| 1 |
| 4 |
两式相减结合an>0的条件整理可得an-an-1=2,从而利用等差数列的通项公式求出an
(3)由(2)中求出Sn,代入求bn=
| 1 |
| n(n+2) |
解答:解:(1)由a1=S1=
(a1-1)(a1+3),及an>0,得a1=3
(2)由Sn=
(an-1)(an+3)
得Sn-1=
(an-1-1)(an-1+3).∴当n≥2时,
an=
(
-
)+2(an-an-1)
∴2(an+an-1)=(an+an-1)(an-an-1)
∵an+an-1>0∴an-an-1=2,
∴由(1)知,{an}是以3为首项,2为公差的等差数列,∴an=2n+1.
(3)由(2)知Sn=n(n+2)∴bn=
=
(
-
),
Tn=b1+b2+…+bn
=
(1-
+
-
++
-
+
-
)
=
[
-
]
=
-
| 1 |
| 4 |
(2)由Sn=
| 1 |
| 4 |
得Sn-1=
| 1 |
| 4 |
an=
| 1 |
| 4 |
| a | 2 n |
| a | 2 n-1 |
∴2(an+an-1)=(an+an-1)(an-an-1)
∵an+an-1>0∴an-an-1=2,
∴由(1)知,{an}是以3为首项,2为公差的等差数列,∴an=2n+1.
(3)由(2)知Sn=n(n+2)∴bn=
| 1 |
| Sn |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
Tn=b1+b2+…+bn
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 3 |
| 2 |
| 2n+3 |
| (n+1)(n+2) |
=
| 3 |
| 4 |
| 2n+3 |
| 2(n+1)(n+2) |
点评:本题主要考查由和sn求an,运用公式an=
可转化得数列项之间的递推关系;在数列的求和方法中裂项求和一直是考查的热点和重点之一,在运用裂项时,两项相错k时,裂项后乘
.
|
| 1 |
| k |
练习册系列答案
相关题目