题目内容

12.已知α是第一角限的角,化简$\sqrt{\frac{1+sinα}{1-sinα}}$-$\sqrt{\frac{1-sinα}{1+sinα}}$.

分析 直接利用二倍角公式化简求解即可.

解答 解:α是第一角限的角,$\frac{α}{2}∈$$(kπ,kπ+\frac{π}{4})$,k∈Z.
$\sqrt{\frac{1+sinα}{1-sinα}}$-$\sqrt{\frac{1-sinα}{1+sinα}}$=$\left|\frac{sin\frac{α}{2}+cos\frac{α}{2}}{sin\frac{α}{2}-cos\frac{α}{2}}\right|-\left|\frac{sin\frac{α}{2}-cos\frac{α}{2}}{sin\frac{α}{2}+cos\frac{α}{2}}\right|$,
当$\frac{α}{2}∈$$(2nπ,2nπ+\frac{π}{4})$,n∈Z时,上式=$\frac{sin\frac{α}{2}+cos\frac{α}{2}}{cos\frac{α}{2}-sin\frac{α}{2}}-\frac{cos\frac{α}{2}-sin\frac{α}{2}}{sin\frac{α}{2}+cos\frac{α}{2}}$=$\frac{2sinα}{cosα}$=2tanα.
当$\frac{α}{2}∈$$(2nπ+π,2nπ+\frac{5π}{4})$,n∈Z时,上式=$\frac{sin\frac{α}{2}+cos\frac{α}{2}}{cos\frac{α}{2}-sin\frac{α}{2}}-\frac{cos\frac{α}{2}-sin\frac{α}{2}}{sin\frac{α}{2}+cos\frac{α}{2}}$=$\frac{2sinα}{cosα}$=2tanα.
综上,$\sqrt{\frac{1+sinα}{1-sinα}}$-$\sqrt{\frac{1-sinα}{1+sinα}}$=2tanα.

点评 本题考查三角函数的化简求值,二倍角的正弦函数的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网