题目内容
若集合,,则 .
函数若方程恰有四个不相等的实数根,则实数m的取值范围是_____.
己知,则m等于( )
A. B. C. D.
(本题满分18分,第1小题满分4分,第2小题满分6分,第3小 题满分8分. )
已知数列{}满足:,为数列的前项和。
若{}是递增数列,且成等差数列,求的值;
若,且{}是递增数列,{}是递减数列,求数列{}的通项公式;
若,对于给定的正整数,是否存在一个满足条件的数列,使得,如果存在,给出一个满足条件的数列,如果不存在,请说明理由。
(本题满分14分,第1小题满分6分,第2小题满分8分).
已知向量,且. 设.
(1)求的表达式,并求函数在上图像最低点的坐标.
(2)若对任意,恒成立,求实数的范围.
设,满足不等式组,若的最大值为,最小值为,则实数的取值范围为( )
(本小题满分12分)
已知椭圆的两个焦点分别为、,短轴的两个端点分别为.
(Ⅰ)若为等边三角形,求椭圆的方程;
(Ⅱ)若椭圆的短轴长为,过点的直线与椭圆相交于两点,且,
求直线的方程.
已知椭圆的离心率为,左、右焦点分别为E、F,椭圆上的点P满足,且△PEF的面积为1,抛物线经过点(2,2).
(Ⅰ)分别求椭圆与抛物线的方程;
(Ⅱ)已知为轴上一点,倾斜角为的直线交椭圆于A、B两点,线段AB的中点为M,直线QM交抛物线于C、D两点,四边形ACBD的面积记为S,若对任意直线l,都存在点Q,使得,求实数的取值范围.
如图所示,已知中,,,,为边上的一点,为上的一点,且,则 .