题目内容
12.将函数y=3sin(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{6}$个单位长度,所得图象对应的函数的单调递减区间是[kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$],k∈Z.分析 利用函数y=Asin(ωx+φ)的图象变换规律求得所得图象对应的解析式,再利用正弦函数的单调性,求得所得图象对应的函数的单调递减区间.
解答 解:将函数y=3sin(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{6}$个单位长度,得到y=3sin(2x-$\frac{π}{3}$+$\frac{π}{3}$)=3sin2x的图象,
令2kπ+$\frac{π}{2}$≤2x≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{π}{4}$≤x≤kπ+$\frac{3π}{4}$,
可得所得图象对应的函数的单调递减区间为[kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$],k∈Z,
故答案为:[kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$],k∈Z.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的单调性,属于基础题.
练习册系列答案
相关题目
20.已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,则该抛物线的焦点到准线的距离为( )
| A. | 4 | B. | 2 | C. | 1 | D. | $\frac{1}{2}$ |
7.若函数f(x)=5cos(ωx+φ)对任意x都有f($\frac{π}{6}$+x)=f($\frac{π}{6}$-x),则f($\frac{π}{6}$)的值为( )
| A. | 0 | B. | 5 | C. | -5 | D. | ±5 |
17.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)在某一周期内的图象时,列表并填入了部分数据,如表:
(Ⅰ)请将上表数据补充完整,并直接写出函数f(x)的解析式;
(Ⅱ)求函数f(x)在区间[-$\frac{π}{2}$,0]上的最大值和最小值.
| ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| x | $\frac{π}{3}$ | $\frac{5π}{6}$ | |||
| Asin(ωx+φ) | 0 | $\sqrt{2}$ | -$\sqrt{2}$ | 0 |
(Ⅱ)求函数f(x)在区间[-$\frac{π}{2}$,0]上的最大值和最小值.
4.已知函数f(x)=|x-1|-1(x∈{0,1,2,3}),则其值域为( )
| A. | {0,1,2,3} | B. | {-1,0,1} | C. | {y|-1≤y≤1} | D. | {y|0≤y≤2} |
2.已知函数f(x)=a-x2(1≤x≤2)与g(x)=2x+1的图象上存在关于x轴对称的点,则实数a的取值范围是( )
| A. | [-2,-1] | B. | [-1,1] | C. | [1,3] | D. | [3,+∞] |