题目内容

设等比数列{an}满足:Sn=2n+a(n∈N+).
(I)求数列{an}的通项公式,并求最小的自然数n,使an>2010;
(II)数列{bn}的通项公式为bn=-
n
an
,求数列{bn}的前n项和Tn
(I)当n=1时,a1=2+a当n≥2时,an=Sn-Sn-1=2n-1(3分)
∵{an}为等比数列,
∴a1=2+a=21-1=1,
∴a=-1
∴{an}的通项公式为an=2n-1(5分)
令2n-1>2010,又n∈N+
∴n≥12.
∴最小的自然数n=12(7分)
(II)bn=-
n
an
=-
n
2n-1
Tn=-(1•1+2•
1
2
+3•
1
22
++n•
1
2n-1
)
①(9分)
1
2
Tn=-[1•
1
2
+2•
1
22
+(n-1)
1
2n-1
+n•
1
2n
]

②-①得-
1
2
Tn=1+
1
2
+
1
22
++
1
2n-1
-n•
1
2n

Tn=
n+2
2n-1
-4
(14分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网