题目内容
22.已知a1=2,点(an,an+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,….
(Ⅰ)证明数列{lg(1+an)}是等比数列;
(Ⅱ)设Tn=(1+a1)(1+a2)…(1+an),求Tn及数列{an}的通项;
(Ⅲ)记bn=
,求数列{bn}的前n项和Sn,并证明Sn+
=1.
解:(Ⅰ)由已知 an+1=a2n+2an,
∴an+1+1=(an+1)2
∵a1=2
∴an+1>1,两边取对数得:
lg(1+an+1)=2 lg(1+an),
即![]()
∴{lg(1+an)}是公比为2的等比数列.
(Ⅱ)由(Ⅰ)知 lg(1+an)=2n-1·lg(1+a1)
=2n-1·lg3
=lg3![]()
∴1+an=3
. (*)
∴Tn=(1+a1)(1+a2)…(1+an)
=3
·3
·3
·…·3![]()
=![]()
=3![]()
由(*)式得an=3
-1.
(Ⅲ)∵an+1=a2n+2an
∴an+1=an(an+2)
∴![]()
∴![]()
又 bn=![]()
∴bn=2(
)
∴Sn=b1+b2+…+bn
=2![]()
=2(
)
∵an=3
-1, a1=2, an+1=3
-1
∴Sn=1-![]()
又Tn=![]()
∴Sn+![]()