题目内容
已知数列{an}的前n项和为Sn,其中a1=1.已知向量
=(2,an),
=(n+1,Sn)(n∈N*),且存在常数λ,使
=λ
.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足a1b1+a2b2+…+anbn=2+(n-1)•2n+1(n∈N*),求数列{an+bn}的前n项和Tn.
| a |
| b |
| a |
| b |
(1)求数列{an}的通项公式;
(2)若数列{bn}满足a1b1+a2b2+…+anbn=2+(n-1)•2n+1(n∈N*),求数列{an+bn}的前n项和Tn.
考点:数列的求和,数列与向量的综合
专题:等差数列与等比数列
分析:(1)由已知条件得2Sn=(n+1)an,由此求出
=
对任意的n∈N*恒成立,从而得到an=n.
(2)由a1b1+a2b2+…+anbn=2+(n-1)•2n+1(n∈N*),得a1b1+a2b2+…+an+1bn+1=2+n•2n+2(n∈N*),两式相减,得an+1bn+1=(n+1)•2n+1,由此求出bn=2n(n∈N*).由此利用分组求和法能求出数列{an+bn}的前n项和Tn.
| an+1 |
| n+1 |
| an |
| n |
(2)由a1b1+a2b2+…+anbn=2+(n-1)•2n+1(n∈N*),得a1b1+a2b2+…+an+1bn+1=2+n•2n+2(n∈N*),两式相减,得an+1bn+1=(n+1)•2n+1,由此求出bn=2n(n∈N*).由此利用分组求和法能求出数列{an+bn}的前n项和Tn.
解答:
解:(1)∵存在常数λ,使
=λ
,∴
∥
,
∴2Sn=(n+1)an,①
∴2Sn+1=(n+2)an+1,②
②-①,得:2an+1=(n+2)an+1-(n+1)an,
整理,得
=
对任意的n∈N*恒成立,
∴{
}是常数列,∴
=
=1,
∴an=n.
(2)∵a1b1+a2b2+…+anbn=2+(n-1)•2n+1(n∈N*),
∴a1b1+a2b2+…+an+1bn+1=2+n•2n+2(n∈N*),
两式相减,得an+1bn+1=(n+1)•2n+1,
由(1)知an+1=n+1,∴bn+1=2n+1,
∴bn=2n,n≥2,
∵a1b1=2,∴b1=2,
∴bn=2n(n∈N*).
∴Tn=(1+2+3+…+n)+(2+22+23+…+2n)
=
+
=
+2n+1-2.
| a |
| b |
| a |
| b |
∴2Sn=(n+1)an,①
∴2Sn+1=(n+2)an+1,②
②-①,得:2an+1=(n+2)an+1-(n+1)an,
整理,得
| an+1 |
| n+1 |
| an |
| n |
∴{
| an |
| n |
| an |
| n |
| a1 |
| 1 |
∴an=n.
(2)∵a1b1+a2b2+…+anbn=2+(n-1)•2n+1(n∈N*),
∴a1b1+a2b2+…+an+1bn+1=2+n•2n+2(n∈N*),
两式相减,得an+1bn+1=(n+1)•2n+1,
由(1)知an+1=n+1,∴bn+1=2n+1,
∴bn=2n,n≥2,
∵a1b1=2,∴b1=2,
∴bn=2n(n∈N*).
∴Tn=(1+2+3+…+n)+(2+22+23+…+2n)
=
| n(n+1) |
| 2 |
| 2(1-2n) |
| 1-2 |
=
| n(n+1) |
| 2 |
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意分组求和法的合理运用.
练习册系列答案
相关题目