题目内容
已知正项数列{an},a1=1,an=an+12+2an+1
(Ⅰ)求证:数列{log2(an+1)}为等比数列:
(Ⅱ)设bn=n1og2(an+1),数列{bn}的前n项和为Sn,求证:1≤Sn<4.
(Ⅰ)求证:数列{log2(an+1)}为等比数列:
(Ⅱ)设bn=n1og2(an+1),数列{bn}的前n项和为Sn,求证:1≤Sn<4.
考点:数列的求和,等比关系的确定
专题:等差数列与等比数列
分析:(Ⅰ)根据数列的递推关系结合等比数列的定义即可证明数列{log2(an+1)}为等比数列:
(Ⅱ)求出bn=n1og2(an+1)的表达式,利用错位相减法即可求出数列{bn}的前n项和为Sn.
(Ⅱ)求出bn=n1og2(an+1)的表达式,利用错位相减法即可求出数列{bn}的前n项和为Sn.
解答:
解:(Ⅰ)∵an=an+12+2an+1,
∴an+1=(an+1+1)2,
∵an>0,
∴2log2(an+1+1)=log2(an+1),
即log2(an+1+1)=
log2(an+1),
即数列{log2(an+1)}是1为首项,
为公比的等比数列:
(Ⅱ)∵数列{log2(an+1)}是1为首项,
为公比的等比数列:
∴log2(an+1)=(
)n-1,
设bn=n1og2(an+1)=n•(
)n-1,
则数列{bn}的前n项和为Sn=1+
+
+…+
+
,
Sn=
+
+…+
+
.
两式相减得
Sn=1+
+
+…+
-
=2[1-(
)n]-
,
∴Sn=4-
<4.
∵bn=n•(
)n-1>0,
∴Sn≥S1=1,
∴1≤Sn<4.
∴an+1=(an+1+1)2,
∵an>0,
∴2log2(an+1+1)=log2(an+1),
即log2(an+1+1)=
| 1 |
| 2 |
即数列{log2(an+1)}是1为首项,
| 1 |
| 2 |
(Ⅱ)∵数列{log2(an+1)}是1为首项,
| 1 |
| 2 |
∴log2(an+1)=(
| 1 |
| 2 |
设bn=n1og2(an+1)=n•(
| 1 |
| 2 |
则数列{bn}的前n项和为Sn=1+
| 2 |
| 2 |
| 3 |
| 22 |
| n-1 |
| 2n-2 |
| n |
| 2n-1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 22 |
| n-1 |
| 2n-1 |
| n |
| 2n |
两式相减得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
| n |
| 2n |
| 1 |
| 2 |
| n |
| 2n |
∴Sn=4-
| n+2 |
| 2n+1 |
∵bn=n•(
| 1 |
| 2 |
∴Sn≥S1=1,
∴1≤Sn<4.
点评:本题主要考查等比数列数列的判断,以及数列求解,利用错位相减法是解决本题的关键.
练习册系列答案
相关题目