题目内容
已知
=(8,
),
=(x,1),其中x>0,若(
-2
)∥(2
+
),则x的值
| a |
| x |
| 2 |
| b |
| a |
| b |
| a |
| b |
4
4
.分析:由
=(8,
),
=(x,1),知
-2
=(8-2x,
-2),2
+
=(16+x,x+1),由(
-2
)∥(2
+
),知
=
,由此能求出x.
| a |
| x |
| 2 |
| b |
| a |
| b |
| x |
| 2 |
| a |
| b |
| a |
| b |
| a |
| b |
| 8-2x |
| 16+x |
| ||
| x+1 |
解答:解:∵
=(8,
),
=(x,1),
∴
-2
=(8-2x,
-2),
2
+
=(16+x,x+1),
∵(
-2
)∥(2
+
),
∴
=
,
解得x=4.
故答案为:4.
| a |
| x |
| 2 |
| b |
∴
| a |
| b |
| x |
| 2 |
2
| a |
| b |
∵(
| a |
| b |
| a |
| b |
∴
| 8-2x |
| 16+x |
| ||
| x+1 |
解得x=4.
故答案为:4.
点评:本题考查平面向量共线的坐标表示,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目