题目内容
若对于正整数k、g(k)表示k的最大奇数因数,例如g(3)=3,g(20)=5,并且g(2m)=g(m)(m∈N*),设Sn=g(1)+g(2)+g(3)+…g(2n)
(Ⅰ)求S1、S2、S3;
(Ⅱ)求Sn.
(Ⅰ)求S1、S2、S3;
(Ⅱ)求Sn.
分析:(Ⅰ)由对于正整数k、g(k)表示k的最大奇数因数,g(2m)=g(m)(m∈N*),S1=g(1)+g(2),S2=g(1)+g(2)+g(3)+g(4),S3=g(1)+g(2)+g(3)+g(4)+g(5)+g(6)+g(7)+g(8),能求出S1,S2,S3.
(Ⅱ)由g(2m)=g(m),n∈N+,知Sn=g(1)+g(2)+g(3)+g(4)+…+g(2n-1)+g(2n)=[g(1)+g(3)+g(5)+…+g(2n-1)]+[g(2)+g(4)+…+g(2n)]=[1+3+5+…+(2n-1)]+[g(2×1)+g(2×2)+…+g(2•2n-1)],得Sn-Sn-1=4n-1,由此能求出Sn.
(Ⅱ)由g(2m)=g(m),n∈N+,知Sn=g(1)+g(2)+g(3)+g(4)+…+g(2n-1)+g(2n)=[g(1)+g(3)+g(5)+…+g(2n-1)]+[g(2)+g(4)+…+g(2n)]=[1+3+5+…+(2n-1)]+[g(2×1)+g(2×2)+…+g(2•2n-1)],得Sn-Sn-1=4n-1,由此能求出Sn.
解答:解:(Ⅰ)S1=g(1)+g(2)=1+1=2
S2=g(1)+g(2)+g(3)+g(4)=1+1+3+1=6
S3=g(1)+g(2)+g(3)+g(4)+g(5)+g(6)+g(7)+g(8)=1+1+3+1+5+3+7+1=22
(Ⅱ)∵g(2m)=g(m),n∈N+
∴Sn=g(1)+g(2)+g(3)+g(4)+…+g(2n-1)+g(2n)
=[g(1)+g(3)+g(5)+…+g(2n-1)]+[g(2)+g(4)+…+g(2n)]
=[1+3+5+…+(2n-1)]+[g(2×1)+g(2×2)+…+g(2•2n-1)]
=
+[g(1)+g(2)+…g(2n-1)]=4n-1+Sn-1
则Sn-Sn-1=4n-1
∴Sn=(Sn-Sn-1)+(Sn-1-Sn-2)+…+(S2-S1)+S1
=4n-1+4n-2+…+42+4+2=
+2=
•4n+
S2=g(1)+g(2)+g(3)+g(4)=1+1+3+1=6
S3=g(1)+g(2)+g(3)+g(4)+g(5)+g(6)+g(7)+g(8)=1+1+3+1+5+3+7+1=22
(Ⅱ)∵g(2m)=g(m),n∈N+
∴Sn=g(1)+g(2)+g(3)+g(4)+…+g(2n-1)+g(2n)
=[g(1)+g(3)+g(5)+…+g(2n-1)]+[g(2)+g(4)+…+g(2n)]
=[1+3+5+…+(2n-1)]+[g(2×1)+g(2×2)+…+g(2•2n-1)]
=
| (1+2n-1)•2n-1 |
| 2 |
则Sn-Sn-1=4n-1
∴Sn=(Sn-Sn-1)+(Sn-1-Sn-2)+…+(S2-S1)+S1
=4n-1+4n-2+…+42+4+2=
| 4(4n-1-1) |
| 4-1 |
| 1 |
| 3 |
| 2 |
| 3 |
点评:本题考查数列的综合运用,考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关题目