题目内容
若对于正整数k、g(k)表示k的最大奇数因数,例如g(3)=3,g(20)=5,并且g(2m)=g(m)(m∈N*),设Sn=g(1)+g(2)+g(3)+…g(2n)
(Ⅰ)求S1、S2、S3;
(Ⅱ)求Sn;
(III)设bn=
,求证数列{bn}的前n顶和Tn<
.
(Ⅰ)求S1、S2、S3;
(Ⅱ)求Sn;
(III)设bn=
| 1 |
| Sn-1 |
| 3 |
| 2 |
分析:(Ⅰ)由对于正整数k、g(k)表示k的最大奇数因数,g(2m)=g(m)(m∈N*),S1=g(1)+g(2),S2=g(1)+g(2)+g(3)+g(4),S3=g(1)+g(2)+g(3)+g(4)+g(5)+g(6)+g(7)+g(8),能求出S1,S2,S3.
(Ⅱ)由g(2m)=g(m),n∈N+,知Sn=g(1)+g(2)+g(3)+g(4)+…+g(2n-1)+g(2n)=[g(1)+g(3)+g(5)+…+g(2n-1)]+[g(2)+g(4)+…+g(2n)]=[1+3+5+…+(2n-1)]+[g(2×1)+g(2×2)+…+g(2•2n-1)],得Sn-Sn-1=4n-1,由此能求出Sn.
(Ⅲ)由bn=
=
=
=
=
(
-
),用裂项求和法能证明数列{bn}的前n顶和Tn<
.
(Ⅱ)由g(2m)=g(m),n∈N+,知Sn=g(1)+g(2)+g(3)+g(4)+…+g(2n-1)+g(2n)=[g(1)+g(3)+g(5)+…+g(2n-1)]+[g(2)+g(4)+…+g(2n)]=[1+3+5+…+(2n-1)]+[g(2×1)+g(2×2)+…+g(2•2n-1)],得Sn-Sn-1=4n-1,由此能求出Sn.
(Ⅲ)由bn=
| 1 |
| Sn-1 |
| 3 |
| 4n-1 |
| 3 |
| (2n)2-1 |
| 3 |
| (2n-1)(2n+1) |
| 3 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 3 |
| 2 |
解答:解:(Ⅰ)S1=g(1)+g(2)=1+1=2(1分)
S2=g(1)+g(2)+g(3)+g(4)=1+1+3+1=6(2分)
S3=g(1)+g(2)+g(3)+g(4)+g(5)+g(6)+g(7)+g(8)
=1+1+3+1+5+3+7+1=22…(3分)
(Ⅱ)∵g(2m)=g(m),n∈N+…(4分)
∴Sn=g(1)+g(2)+g(3)+g(4)+…+g(2n-1)+g(2n)
=[g(1)+g(3)+g(5)+…+g(2n-1)]+[g(2)+g(4)+…+g(2n)]
=[1+3+5+…+(2n-1)]+[g(2×1)+g(2×2)+…+g(2•2n-1)]…(5分)
=
+[g(1)+g(2)+…g(2n-1)]…(6分)
=4n-1+Sn-1…(7分)
则Sn-Sn-1=4n-1,
∴Sn=(Sn-Sn-1)+(Sn-1-Sn-2)+…+(S2-S1)+S1…(8分)
=4n-1+4n-2+…+42+4+2
=
+2=
•4n+
…(9分)
(Ⅲ)bn=
=
=
=
=
(
-
),…(10分)Tn=
(
-
)+
(
-
)+
(
-
)+…+
(
-
)
=
[1-
+
-
+
+…+
-
+
-
]
=
[1-(
-
)-(
-
)-…-(
-
)-
]…(11分)
∴当n=1时,T1=b1=1<
成立 …(12分)
当n≥2时,
-
=
=
≥0…(13分)
∴Tn=
[1-(
-
)-(
-
)-…(
-
)-
<
•1=
,
∴Tn<
.…(14分)
S2=g(1)+g(2)+g(3)+g(4)=1+1+3+1=6(2分)
S3=g(1)+g(2)+g(3)+g(4)+g(5)+g(6)+g(7)+g(8)
=1+1+3+1+5+3+7+1=22…(3分)
(Ⅱ)∵g(2m)=g(m),n∈N+…(4分)
∴Sn=g(1)+g(2)+g(3)+g(4)+…+g(2n-1)+g(2n)
=[g(1)+g(3)+g(5)+…+g(2n-1)]+[g(2)+g(4)+…+g(2n)]
=[1+3+5+…+(2n-1)]+[g(2×1)+g(2×2)+…+g(2•2n-1)]…(5分)
=
| (1+2n-1)•2n-1 |
| 2 |
=4n-1+Sn-1…(7分)
则Sn-Sn-1=4n-1,
∴Sn=(Sn-Sn-1)+(Sn-1-Sn-2)+…+(S2-S1)+S1…(8分)
=4n-1+4n-2+…+42+4+2
=
| 4(4n-1-1) |
| 4-1 |
| 1 |
| 3 |
| 2 |
| 3 |
(Ⅲ)bn=
| 1 |
| Sn-1 |
| 3 |
| 4n-1 |
| 3 |
| (2n)2-1 |
| 3 |
| (2n-1)(2n+1) |
| 3 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 3 |
| 2 |
| 1 |
| 21-1 |
| 1 |
| 2+1 |
| 3 |
| 2 |
| 1 |
| 22-1 |
| 1 |
| 22+1 |
| 3 |
| 2 |
| 1 |
| 23-1 |
| 1 |
| 23+1 |
| 3 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 3 |
| 2 |
| 1 |
| 2+1 |
| 1 |
| 22-1 |
| 1 |
| 22+1 |
| 1 |
| 23-1 |
| 1 |
| 2n-1-1 |
| 1 |
| 2n-1+1 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 3 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 22+1 |
| 1 |
| 23-1 |
| 1 |
| 2n-1+1 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴当n=1时,T1=b1=1<
| 3 |
| 2 |
当n≥2时,
| 1 |
| 2n-1+1 |
| 1 |
| 2n-1 |
| 2n-1-2n-1-1 |
| (2n-1+1)(2n-1) |
| 2n-1-2 |
| (2n-1+1)(2n-1) |
∴Tn=
| 3 |
| 2 |
| 1 |
| 2+1 |
| 1 |
| 22-1 |
| 1 |
| 22+1 |
| 1 |
| 23-1 |
| 1 |
| 2n-1+1 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 3 |
| 2 |
| 3 |
| 2 |
∴Tn<
| 3 |
| 2 |
点评:本题考查数列与不等式的综合运用,考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关题目