题目内容

8.已知{an}成等差数列,d为公差,若?m,n∈N+,m≠n,使Sm=Sn,则Sm+n=0.(Sn为{an}的前n项和)类比上述结论:{bn}为等比数列,q为公比,若?m,n∈N+,m≠n,使Tm=Tn,则Tm+n=1(Tn为{bn}的前n项积).

分析 根据已知中等差数列的性质,类比推理,可得相关的等比数列的性质.

解答 解:由已知{an}成等差数列,d为公差,若?m,n∈N+,m≠n,使Sm=Sn,则Sm+n=0.(Sn为{an}的前n项和)
类比上述结论:{bn}为等比数列,q为公比,若?m,n∈N+,m≠n,使Tm=Tn,则Tm+n=1(Tn为{bn}的前n项积).
故答案为:Tm+n=1

点评 类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网