题目内容

11.已知sinα+sinβ=$\frac{1}{4}$,cosα+cosβ=$\frac{1}{3}$,则cos(α+β)=$\frac{7}{25}$.

分析 先利用和差化积公式化简已知,将两式相除后,利用同角三角函数基本关系式可求tan$\frac{α+β}{2}$,cos2$\frac{α+β}{2}$的值,利用二倍角的余弦函数公式即可化简求值.

解答 解:∵sinα+sinβ=2sin$\frac{α+β}{2}$cos$\frac{α-β}{2}$=$\frac{1}{4}$,①
cosα+cosβ=2cos$\frac{α+β}{2}$cos$\frac{α-β}{2}$=$\frac{1}{3}$,②
∴①÷②可得:tan$\frac{α+β}{2}$=$\frac{3}{4}$,
∴cos2$\frac{α+β}{2}$=$\frac{1}{1+ta{n}^{2}\frac{α+β}{2}}$=$\frac{16}{25}$,
∴cos(α+β)=2cos2$\frac{α+β}{2}$-1=$\frac{7}{25}$.
故答案为:$\frac{7}{25}$.

点评 本题主要考查了和差化积公式,同角三角函数基本关系式,二倍角的余弦函数公式在三角函数化简求值中的应用,考查了转化思想和计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网