题目内容

5.设实数x,y满足约束条件$\left\{\begin{array}{l}{x+y≥0}\\{x-y≤0}\\{x+3y≤3}\end{array}\right.$,则$\frac{x+y}{\sqrt{{x}^{2}+{y}^{2}}}$的取值范围是[0,2].

分析 画出约束条件的可行域,化简目标函数,转化为直线的斜率问题,通过函数的值域求解目标函数的范围即可.

解答 解:约束条件的可行域如图:由$\left\{\begin{array}{l}{x+y=0}\\{x+3y=3}\end{array}\right.$可得A(-$\frac{3}{2}$,$\frac{3}{2}$),
$\left\{\begin{array}{l}{x-y=0}\\{x+3y=3}\end{array}\right.$可得B($\frac{3}{4}$,$\frac{3}{4}$),
则$\frac{x+y}{\sqrt{{x}^{2}+{y}^{2}}}$=$\sqrt{1+\frac{2xy}{{x}^{2}+{y}^{2}}}$=$\sqrt{1+\frac{2}{\frac{y}{x}+\frac{x}{y}}}$,由题意可得$\frac{y}{x}$∈[-1,1],令t=$\frac{y}{x}$∈[-1,1],则$\frac{y}{x}+\frac{x}{y}$=t+$\frac{1}{t}$∈[2,+∞)∪(-∞,-2],
∴$\sqrt{1+\frac{2}{\frac{y}{x}+\frac{x}{y}}}$∈[0,2].
故答案为:[0,2].

点评 本题考查线性规划的简单应用,考查数形结合以及函数的最值的求法,考查转化思想以及计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网