题目内容

5.已知椭圆G:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$上的点$M(2,\sqrt{2})$到两焦点的距离之和等于$4\sqrt{2}$.
(Ⅰ)求椭圆G的方程;
(Ⅱ)经过椭圆G右焦点F的直线m(不经过点M)与椭圆交于A,B两点,与直线l:x=4相交于C点,记直线MA,MB,MC的斜率分别为k1,k2,k3.求证:$\frac{{{k_1}+{k_2}}}{k_3}$为定值.

分析 (Ⅰ)由椭圆定义知:$2a=4\sqrt{2}$,即$a=2\sqrt{2}$,将点$M(2,\sqrt{2})$的坐标代入椭圆$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{{b}^{2}}=1$,求出b的值,则椭圆G的方程可求;
(Ⅱ)由(Ⅰ)知右焦点F(2,0),由题意,直线m有斜率,设方程为y=k(x-2),令x=4,得点C(4,2k),即可求出k3的斜率,联立$\left\{\begin{array}{l}y=k(x-2)\\ \frac{x^2}{8}+\frac{y^2}{4}=1\end{array}\right.$,得到:(1+2k2)x2-8k2x+8k2-8=0,由△>0,设A(x1,y1),
B(x2,y2),再由根与系数的关系得到x1+x2和x1•x2,则k1+k2可求,进一步得到要证明的结论.

解答 (Ⅰ)解:由椭圆定义知:$2a=4\sqrt{2}$,∴$a=2\sqrt{2}$.
∴椭圆$G:\frac{x^2}{8}+\frac{y^2}{b^2}=1$,将点$M(2,\sqrt{2})$的坐标代入得b2=4.
∴椭圆G的方程为$\frac{x^2}{8}+\frac{y^2}{4}=1$;
(Ⅱ)证明:右焦点F(2,0),
由题意,直线m有斜率,设方程为y=k(x-2),
令x=4,得点C(4,2k),∴${k_3}={k_{MC}}=k-\frac{{\sqrt{2}}}{2}$;  
又由$\left\{\begin{array}{l}y=k(x-2)\\ \frac{x^2}{8}+\frac{y^2}{4}=1\end{array}\right.$消元得:(1+2k2)x2-8k2x+8k2-8=0,
显然△>0,设A(x1,y1),B(x2,y2),则$\left\{\begin{array}{l}{x_1}+{x_2}=\frac{{8{k^2}}}{{1+2{k^2}}}\\{x_1}•{x_2}=\frac{{8{k^2}-8}}{{1+2{k^2}}}\end{array}\right.$,
∴${k_1}+{k_2}=\frac{{{y_1}-\sqrt{2}}}{{{x_1}-2}}+\frac{{{y_2}-\sqrt{2}}}{{{x_2}-2}}=\frac{y_1}{{{x_1}-2}}+\frac{y_2}{{{x_2}-2}}-\sqrt{2}(\frac{1}{{{x_1}-2}}+\frac{1}{{{x_2}-2}})$
=$2k-\sqrt{2}×\frac{{{x_1}+{x_2}-4}}{{({x_1}-2)({x_2}-2)}}$=$2k-\sqrt{2}×\frac{{{x_1}+{x_2}-4}}{{{x_1}{x_2}-2({x_1}+{x_2})+4}}$
=$2k-\sqrt{2}×\frac{{8{k^2}-4(1+2{k^2})}}{{8{k^2}-8-16{k^2}+4+8{k^2}}}$=$2k-\sqrt{2}×\frac{-4}{-4}=2k-\sqrt{2}$.
∴k1+k2=2k3,即$\frac{{{k_1}+{k_2}}}{k_3}=2$为定值.

点评 本题考查了椭圆的简单性质,考查了直线与圆锥曲线位置关系的应用,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网