题目内容
12.若奇函数y=f(x)在区间(0,+∞)上是增函数,又f(-3)=0,则不等式f(x)<0的解集为( )| A. | (-3,0)∪(3,+∞) | B. | (-3,0)∪(0,3) | C. | (-∞,-3)∪(0,3) | D. | (-∞,-3)∪(3,+∞) |
分析 利用函数是奇函数且在(0,+∞)内是增函数,得到函(-∞,0)上单调递增,利用f(-3)=0,得f(3)=0,然后解不等式即可.
解答 解:∵f(x)是奇函数,f(-3)=0,
∴f(-3)=-f(3)=0,解f(3)=0.![]()
∵函数在(0,+∞)内是增函数,
∴当0<x<3时,f(x)<0.
当x>3时,f(x)>0,
∵函数f(x)是奇函数,
∴当-3<x<0时,f(x)>0.
当x<-3时,f(x)<0,
则不等式f(x)<0的解集{x|x<-3或0<x<3}.
故选C.
点评 本题主要考查函数奇偶性和单调性之间的关系,利用函数奇偶性的对称性,可解不等式的解集.
练习册系列答案
相关题目
3.微信是腾讯公司推出的一种手机通讯软件,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各50名,其中每天玩微信超过6小时的用户为“A组”,否则为“B组”,调查结果如下:
(Ⅰ)根据以上数据,能否有60%的把握认为“A组”用户与“性别”有关?
(Ⅱ)现从调查的女性用户中按分层抽样的方法选出5人赠送营养面膜1份,求所抽取5人中“A组”和“B组”的人数;
(Ⅲ)从(Ⅱ)中抽取的5人中再随机抽取3人赠送200元的护肤品套装,求“这3人中既有A组又有B组”的概率.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d为样本容量.
参考数据:
| A组 | B组 | 合计 | |
| 男性 | 26 | 24 | 50 |
| 女性 | 30 | 20 | 50 |
| 合计 | 56 | 44 | 100 |
(Ⅱ)现从调查的女性用户中按分层抽样的方法选出5人赠送营养面膜1份,求所抽取5人中“A组”和“B组”的人数;
(Ⅲ)从(Ⅱ)中抽取的5人中再随机抽取3人赠送200元的护肤品套装,求“这3人中既有A组又有B组”的概率.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d为样本容量.
参考数据:
| P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
| $\overrightarrow{OA}•\overrightarrow{OB}=0$ | 0.455 | 0.708 | 1.323 | 3.841 | 5.024 | 6.635 |
20.要得到函数y=sin(2x-$\frac{π}{4}$)的图象,只要将函数y=sin2x的图象( )
| A. | 向左平移$\frac{π}{4}$ | B. | 向右平移$\frac{π}{4}$ | C. | 向左平移$\frac{π}{8}$ | D. | 向右平移$\frac{π}{8}$ |
7.在校庆文娱汇演节目中,高二级有3名男生3名女生站成一列合唱“爱我中华”,恰好有两位女同学站在一起的站法一共有( )
| A. | 216种 | B. | 288种 | C. | 360种 | D. | 432种 |
1.已知定义在R上的可导函数f(x)的导函数为f′(x),若对于任意实数x,有f(x)>f′(x),且f(0)=1,则不等式f(x)<ex的解集为( )
| A. | (-∞,0) | B. | (0,+∞) | C. | (-∞,e4) | D. | (e4,+∞) |
2.将3颗骰子各掷一次,记事件A为“三个点数都不同”,事件B为“至少出现一个1点”,则条件概率P(A|B)和P(B|A)分别为( )
| A. | $\frac{1}{2},\frac{60}{91}$ | B. | $\frac{5}{18},\frac{60}{91}$ | C. | $\frac{60}{91},\frac{1}{2}$ | D. | $\frac{91}{216},\frac{1}{2}$ |