题目内容
14.在正四面体S-ABC中,E为SA的中点,F为△ABC的中心,则直线EF与面ABC所成的角的余弦值为$\frac{\sqrt{3}}{3}$.分析 做出辅助线,连接AF并延长交BC于H,取线段AF的中点G,连接EG,证出线面角,把线面角放到一个直角三角形中,根据三角函数的定义得到结果,
解答 解:连接SF,则SF⊥平面ABC.连接AF并延长交BC于H,取线段AF的中点G,连接EG,
由E为SA的中点,则EG∥SF,
∴EG⊥平面ABC,![]()
∴∠EFG即为EF与平面ABC所成的角.
设正四面体的边长为a,则AH=$\frac{\sqrt{3}}{2}$a,且AF=$\frac{\sqrt{3}}{3}$a,
在Rt△AGE中,AE=$\frac{1}{2}$a,AG=$\frac{1}{2}$AF=$\frac{\sqrt{3}}{6}$a,∠EGA=90°,
∴EG=AE2-AG2=$\frac{\sqrt{6}}{6}$a.
在Rt△EGF中,FG=$\frac{1}{2}$AF=$\frac{\sqrt{3}}{6}$a,EG=$\frac{\sqrt{6}}{6}$a,EF=$\frac{a}{2}$,∠EGF=90°,
∴cos∠EFG=$\frac{\sqrt{3}}{3}$
即EF与平面ABC所成的角的余弦值是$\frac{\sqrt{3}}{3}$,
故答案为:$\frac{\sqrt{3}}{3}$.
点评 本题考查直线与平面所成的角,本题解题的关键是先做出线面角,再证出线面角,最后把角放到一个三角形中解出结果.
练习册系列答案
相关题目
2.曲线$y=cos(x+\frac{π}{6})$在x=$\frac{π}{6}$处切线的斜率为( )
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | -$\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
19.曲线f(x)=ex在点A(x0,f(x0))处的切线与直线x-y+3=0平行,则点A的坐标为( )
| A. | (-1,e-1) | B. | (0,1) | C. | (1,e) | D. | (0,2) |
6.已知两个平面垂直,下列命题中正确的是B( )
| A. | 一个平面内已知直线必垂直于另一个平面内的任意一条直线 | |
| B. | 一个平面内已知直线必垂直于另一个平面内的无数条直线 | |
| C. | 一个平面内已知直线必垂直于另一个平面 | |
| D. | 两直线分别在这两平面内,它们所成的角等于90° |