题目内容
11.若圆C:(x+1)2+(y-2)2=8关于直线2ax+by+6=0对称,则由点M(a,b)向圆所作的切线长的最小值是$\sqrt{10}$.分析 由题意可知直线经过圆的圆心,推出a,b的关系,利用(a,b)与圆心的距离,半径,求出切线长的表达式,然后求出最小值.
解答 解:若圆C:(x+1)2+(y-2)2=8的圆心坐标为(-1,2)半径为2$\sqrt{2}$.
圆C:(x+1)2+(y-2)2=8关于直线2ax+by+6=0对称,所以(-1,2)在直线上,可得-2a+2b+6=0,
即a=b+3.
所以点(a,b)向圆C所作切线长:$\sqrt{(a+1)^{2}+(b-2)^{2}-8}$=$\sqrt{2(a-2)^{2}+10}$≥$\sqrt{10}$
当且仅当a=2时弦长最小,为$\sqrt{10}$.
故答案为$\sqrt{10}$.
点评 本题考查直线与圆的位置关系,对称问题,圆的切线方程的应用,考查计算能力.
练习册系列答案
相关题目
16.
(1)画出散点图.观察散点图,说明两个变量有怎样的相关性.
(2)用最小二乘法计算利润额y对销售额x的回归直线方程.参考公式:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$
(3)当销售额为4(千万元)时,估计利润额的大小.
| 商品名称 | A | B | C | D | E |
| 销售额x(千万元) | 3 | 5 | 6 | 7 | 9 |
| 利润额y(百万元) | 2 | 3 | 3 | 4 | 5 |
(2)用最小二乘法计算利润额y对销售额x的回归直线方程.参考公式:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$
(3)当销售额为4(千万元)时,估计利润额的大小.
20.复数z1,z2在复平面内对应的点的坐标分别为(0,2),(1,-1),则$\frac{z_1}{z_2}$的模为( )
| A. | 1 | B. | 1+i | C. | $\sqrt{2}$ | D. | 2 |