题目内容
已知函数,若恒成立,则实数a的取值范围是
(A) (B)
(C) (D)
B
设 , ,给出下列三个结论:
① ,② , ③ ,
其中所有的正确结论的序号是
A.① B.① ② C.② ③ D.①②③
某学校从高二甲、乙两个班中各选6名同掌参加数学竞赛,他们取
得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的众数是
85,乙班学生成绩的平均分为81,则x+y的值为
(A)6 (B)7
(C)8 (D)9
已知函数的定义域为,对定义域内的任意x,满足,当时,(a为常),且是函数的一个极值点,
(I)求实数a的值;
(Ⅱ)如果当时,不等式恒成立,求实数m的最大值;
(Ⅲ)求证:
一个几何体的三视图如图所示,则该几何体的体积为
(A) (B) (C) (D)
已知向量.
(I)求函数的单调增区间;
(Ⅱ)已知锐角△ABC中角A,B,C的对边分别为a,b,c.其面积,求b+c的值.
已知两点、,且是与的等差中项,则动点的轨迹方程是 ( )
A. B. C. D.
如图,直三棱柱(侧棱垂直于底面的棱柱),底面中
,棱,分别为D的中点.
(I )求 >的值;
(II)求证:
(III)求.
已知抛物线,过定点的直线交抛物线于A、B两点.
(Ⅰ)分别过A、B作抛物线的两条切线,A、B为切点,求证:这两条切线的交点在定直线上.
(Ⅱ)当时,在抛物线上存在不同的两点P、Q关于直线对称,弦长|PQ|中是否存在最大值?若存在,求其最大值(用表示),若不存在,请说明理由.