题目内容
(文)数列{an}中a1=0,
,(1)求证数列
为等差数列,并求出公差;(2)设数列{an}的前n项和为Sn,证明Sn<n-ln(n+1);(3)设
,证明:对任意正整数n,m,都有
.
(1)略 (2)略
解析:
(1)∵
即
,∴公差d=-1.
且首项为
,故
是等差数列.
(2)∵
,∴
.
设f(x)=x-ln(x+1),(x>0),则
,f(x)在(0,+∞)↑,且f(x)在[0,+∞)上连续,∴f(x)>f(0)=0,∴x>0时x>ln(x+1), ∴
,即
.
∴an<1-ln(n+1)+lnn,∴Sn<(1-ln2+ln1)+(1-ln3+ln2)+…+[1-ln(n+1)+lnn]=n-ln(n+1)故Sn<n-ln(n+1).
(3)∵
,∴
,当
时,则
,∴
,
即n≥4;又当
时,则
,即n≤3,因此得b1<b2<b3<b4>b5>b6>…,又∵b1=0,n≥2时,bn>0,∴0≤bn≤b4.∴对任意正整数n、m,都有![]()
练习册系列答案
相关题目