题目内容
18.不等式(x+3)(1-x)≥0的解集为( )| A. | {x|-3≤x≤1} | B. | {x|x≥3或x≤-1} | C. | {x|-1≤x≤3} | D. | {x|x≤-3或x≥1} |
分析 把不等式化为(x+3)(x-1)≤0,写出它的解集即可.
解答 解:不等式(x+3)(1-x)≥0可化为
(x+3)(x-1)≤0,
解得-3≤x≤1,
所以不等式的解集为{x|-3≤x≤1}.
故选:A.
点评 本题考查了一元二次不等式的解法与应用问题,是基础题目.
练习册系列答案
相关题目
6.设角α的终边经过点(-6t,-8t) (t≠0),则sin α-cos α的值是( )
| A. | $\frac{1}{5}$ | B. | -$\frac{1}{5}$ | C. | ±$\frac{1}{5}$ | D. | 不确定 |
13.运用三段论推理:复数不可以比较大小(大前提),2015和2016都是复数(小前提),2015和2016不能比较大小(结论).以上推理( )
| A. | 结论正确 | B. | 小前提错误 | C. | 推理形式错误 | D. | 大前提错误 |
3.已知关于x的一元二次不等式ax2+bx+c>0的解集为{x|-2<x<3},则不等式cx2-bx+a<0的解集是( )
| A. | {x|x$<-\frac{1}{2}$或x$>\frac{1}{3}$} | B. | {x|x$\frac{1}{3}$或x>$\frac{1}{2}$} | C. | {x|-$\frac{1}{2}$<x<$\frac{1}{3}$} | D. | {x|-$\frac{1}{3}$<x<$\frac{1}{2}$} |