题目内容
8.如果实数x,y满足约束条件$\left\{\begin{array}{l}{2x+y-4≤0}\\{x-y-1≤0}\\{x≥1}\end{array}\right.$,则z=3x+2y+$\frac{y}{x}$的最大值为( )| A. | 7 | B. | 8 | C. | 9 | D. | 11 |
分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移直线,得到最优解,求出斜率的最值,即可求z的最大值.
解答
解:作出不等式对应的平面区域(阴影部分),
由u=3x+2y,平移直线u=3x+2y,由图象可知当直线u=3x+2y经过点A时,直线u=3x+2y的截距最大,此时u最大.
而且$\frac{y}{x}$也恰好是AO的连线时,取得最大值,
由$\left\{\begin{array}{l}{x=1}\\{2x+y-4=0}\end{array}\right.$,解得A(1,2).
此时z的最大值为z=3×1+2×2+$\frac{2}{1}$=9,
故选:C.
点评 本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.
练习册系列答案
相关题目
16.
如图,在正方体ABCD-A1B1C1D1中,棱AB的中点为P,若光线从点P出发,依次经三个侧面BCC1B1,DCC1D1,ADD1A1反射后,落到侧面ABB1A1(不包括边界),则入射光线PQ与侧面BCC1B1所成角的正切值的范围是( )
| A. | ($\frac{3}{4}$,$\frac{5}{4}$) | B. | ($\frac{2\sqrt{17}}{17}$,4) | C. | ($\frac{\sqrt{5}}{5}$,$\frac{3}{2}$) | D. | ($\frac{3\sqrt{5}}{10}$,$\frac{5}{4}$) |
13.理科竞赛小组有9名女生、12名男生,从中随机抽取一个容量为7的样本进行分析.
(Ⅰ)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可)
(Ⅱ)如果随机抽取的7名同学的物理、化学成绩(单位:分)对应如表:
规定85分以上(包括85份)为优秀,从这7名同学中再抽取3名同学,记这3名同学中物理和化学成绩均为优秀的人数为X,求随机变量X的分布列和数学期望.
(Ⅰ)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可)
(Ⅱ)如果随机抽取的7名同学的物理、化学成绩(单位:分)对应如表:
| 学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 物理成绩 | 65 | 70 | 75 | 81 | 85 | 87 | 93 |
| 化学成绩 | 72 | 68 | 80 | 85 | 90 | 86 | 91 |
20.如图所示的程序框图描述的为辗转相除法,若输入m=5280,n=1595,则输出的m=( )

| A. | 2 | B. | 55 | C. | 110 | D. | 495 |
17.已知函数f(x)的定义域为R,当x∈[-2,2]时,f(x)单调递减,且函数f(x+2)为偶函数,则下列结论正确的是( )
| A. | f(π)<f(3)<f($\sqrt{2}$) | B. | f(π)<f($\sqrt{2}$)<f(3) | C. | f($\sqrt{2}$)<f(3)<f(π) | D. | f($\sqrt{2}$)<f(π)<f(3) |
18.
定义[x]表示不超过x的最大整数,例如[2.11]=2,[-1.39]=-2,执行如下图所示的程序框图,则输出m的值为
( )
( )
| A. | $\frac{19}{3}$ | B. | $\frac{53}{8}$ | C. | $\frac{171}{6}$ | D. | $\frac{185}{8}$ |