题目内容

12.设直线l:3x+4y+a=0,圆C:(x-2)2+y2=4,若在直线l上存在一点M,使得过M的圆C的切线MP,MQ(P,Q为切点)满足∠PMQ=90°,则a的取值范围是(  )
A.[-18,6]B.[6-5$\sqrt{2}$,6+5$\sqrt{2}$]C.[-16,4]D.[-6-5$\sqrt{2}$,-6+5$\sqrt{2}$]

分析 由切线的对称性和圆的知识可将问题转化为只需直线l到C(2,0)的距离小于或等于2,由点到直线的距离公式解a的不等式可得.

解答 解:∵在直线l上存在一点M,使得过M的圆C的切线MP,MQ(P,Q为切点)满足∠PMQ=90°,
∴在直线l上存在一点M,使得过M到C(2,0)的距离等于2,
∴只需直线l到C(2,0)的距离小于或等于2,
故$\frac{|3×2+4×0+a|}{\sqrt{{3}^{2}+{4}^{2}}}$≤$\sqrt{2}$,解得-16≤a≤4,
故选:C.

点评 本题考查直线和圆的位置关系,数形结合并转化为点到直线的距离小于或等于2是解决问题的关键,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网