题目内容
16.已知数列{an}是a3=$\frac{1}{64}$,公比q=$\frac{1}{4}$的等比数列,设bn+2=3${log}_{\frac{1}{4}}$an(n∈N*),数列{cn}满足cn=anbn.(1)求证:数列{bn}是等差数列;
(2)求数列{cn}的前n项和Sn.
分析 (1)根据已知条件求出等比和等差数列的通项公式,进一步利用定义法证明数列是等差数列.
(2)根据所求出的通项公式,利用乘公比错位相减法求数列的和.
解答 解:(1)数列{an}是a3=$\frac{1}{64}$,公比q=$\frac{1}{4}$的等比数列,
设首项为a1,则:a3=${a}_{1}{q}^{2}$,
解得:${a}_{1}=\frac{1}{4}$,
所以:${a}_{n}={a}_{1}{q}^{n-1}=(\frac{1}{4})^{n}$.
由于:bn+2=3${log}_{\frac{1}{4}}$an(n∈N*),
则:${b}_{n}+2=3{log}_{\frac{1}{4}}(\frac{1}{4})^{n}$,
求得:bn=3n-2.
则:bn+1=3(n+1)-2=3n+1.
bn+1-bn=3(常数).
所以:数列{bn}是等差数列.
(2)数列{cn}满足cn=anbn.
Sn=c1+c2+…+cn
则:${S}_{n}=1•(\frac{1}{4})^{1}$+$4•(\frac{1}{4})^{2}$+…+$(3n-2){(\frac{1}{4})}^{n}$①
$\frac{1}{4}{S}_{n}=1•{(\frac{1}{4})}^{2}$+$4•(\frac{1}{4})^{3}$+…+$(3n-5){(\frac{1}{4})}^{n}$+$(3n-2){(\frac{1}{4})}^{n+1}$②
所以①-②得:
$\frac{3}{4}{S}_{n}$=$3[(\frac{1}{4})^{1}+$$(\frac{1}{4})^{2}$+…+$(\frac{1}{4})^{n}$]-$2•\frac{1}{4}-$$(3n-2){(\frac{1}{4})}^{n+1}$
整理得:$\frac{3}{4}{S}_{n}$=3$•\frac{\frac{1}{4}(1-(\frac{1}{4})^{n})}{1-\frac{1}{4}}$-$\frac{1}{2}$-$(3n-2){(\frac{1}{4})}^{n+1}$
则:${S}_{n}=\frac{2}{3}-(n+\frac{2}{3})(\frac{1}{4})^{n}$
点评 本题考查的知识要点:等差和等比数列通项公式的求法,乘公比错位相减法在数列求和中的应用.