题目内容
若直线x-y+2=0与圆C:(x-3)2+(y-3)2=4相交于A,B两点,则的值为( )
A.-1 B.0
C.1 D.6
B
设x,y满足约束条件
且z=x+ay的最小值为7,则a=( )
A.-5 B.3
C.-5或3 D.5或-3
直线(2λ+1)x+(λ-1)y+1=0(λ∈R),恒过定点________.
已知两点A(-2,0),B(0,2),点C是圆x2+y2-2x=0上任意一点,则△ABC面积的最小值是________.
已知曲线C的方程为:ax2+ay2-2a2x-4y=0(a≠0,a为常数).
(1)判断曲线C的形状;
(2)设曲线C分别与x轴,y轴交于点A,B(A,B不同于原点O),试判断△AOB的面积S是否为定值?并证明你的判断;
(3)设直线l:y=-2x+4与曲线C交于不同的两点M,N,且|OM|=|ON|,求曲线C的方程.
已知:圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0.
(1)当a为何值时,直线l与圆C相切;
(2)当直线l与圆C相交于A,B两点,且|AB|=2时,求直线l的方程.
椭圆+=1的离心率为,则k的值为( )
A.-21 B.21
C.-或21 D.或21
已知F为双曲线C:x2-my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为( )
A. B.3
C.m D.3m
已知动圆过定点A(0,2),且在x轴上截得的弦长为4.
(1)求动圆圆心的轨迹C的方程;
(2)点P为轨迹C上任意一点,直线l为轨迹C上在点P处的切线,直线l交直线:y=-1于点R,过点P作PQ⊥l交轨迹C于点Q,求△PQR的面积的最小值.