题目内容

4.在△ABC中,角A,B,C的对边分别为a,b,c,已知4sin2$\frac{A+B}{2}$-cos2C=$\frac{7}{2}$,且c=$\sqrt{7}$,
(1)求角C
(2)求△ABC的面积的最大值.

分析 (1)利用二倍角公式,结合C是三角形的内角,可求C;
(2)利用余弦定理,求得ab的最大值,再利用三角形的面积公式,即可求得结论.

解答 解:(1)∵4sin2$\frac{A+B}{2}$-cos2C=$\frac{7}{2}$,
∴2[1-cos(A+B)]-2cos2C+1=$\frac{7}{2}$,
∴2+2cosC-2cos2C=$\frac{5}{2}$,
∴cos2C-cosC+$\frac{1}{4}$=0,
∴cosC=$\frac{1}{2}$,
∵0<C<π,∴C=$\frac{π}{3}$;
(2)由c=$\sqrt{7}$,
由余弦定理得:cosC=$\frac{{a}^{2}+{b}^{2}-7}{2ab}$,
∴ab=a2+b2-7,
∵a2+b2≥2ab(当且仅当a=b取得等号),
∴ab≥2ab-7,即ab≤7,
即有S△ABC=$\frac{1}{2}$absinC≤$\frac{1}{2}$×7×$\frac{\sqrt{3}}{2}$=$\frac{7\sqrt{3}}{4}$.
当a=b时,△ABC的面积的最大值为$\frac{7\sqrt{3}}{4}$.

点评 本题考查二倍角余弦公式的运用,余弦定理和基本不等式的运用,考查运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网