题目内容

18.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线方程为y=±2$\sqrt{2}$x,则该双曲线的离心率为(  )
A.$\frac{{3\sqrt{2}}}{2}$B.$\frac{{2\sqrt{2}}}{3}$C.3D.$\sqrt{5}$

分析 根据双曲线的渐近线方程,得到a,b的关系结合离心率的定义进行求解即可.

解答 解:由双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)知双曲线的焦点在x轴,
则两条渐近线方程为y=±$\frac{b}{a}$x,
∵双曲线的渐近线方程为y=±2$\sqrt{2}$x,∴$\frac{b}{a}=2\sqrt{2}$,
则e=$\frac{c}{a}$=$\sqrt{\frac{{a}^{2}+{b}^{2}}{{a}^{2}}}$=$\sqrt{1+8}$=3.
故选:C.

点评 本题主要考查双曲线离心率的计算,根据双曲线渐近线得到a,b的关系是解决本题的关键.比较基础.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网