题目内容

1.某三棱锥的三视图如图所示,正视图是边长为3的等边三角形,则该三棱锥外接球的表面积为(  )
A.12πB.$6\sqrt{3}π$C.D.18π

分析 根据题意得到该几何体有一个侧面PAC垂直于底面,高为$\frac{3\sqrt{3}}{2}$,底面是一个等腰直角三角形的三棱锥,如图所示,这个几何体的外接球的球心O在高线PD上,且是等边三角形PAC的中心,求出外接球的半径,即可确定出表面积.

解答 解:由已知中正视图是一个正三角形,侧视图和俯视图均为三角形,
可得该几何体是有一个侧面PAC垂直于底面,高为$\frac{3\sqrt{3}}{2}$,底面是一个等腰直角三角形的三棱锥,如图所示,
∴这个几何体的外接球的球心O在高线PD上,且是等边三角形PAC的中心,
∴这个几何体的外接球的半径R=$\frac{2}{3}$PD=$\sqrt{3}$,
则几何体的外接球的表面积为4πR2=12π.
故选A.

点评 此题考查了由三视图求面积、体积,根据三视图正确画出几何体是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网