题目内容

某船开始看见灯塔在南偏东30°方向,后来船沿南偏东60°的方向航行30 nmile后看见灯塔在正西方向,则这时船与灯塔的距离是        . 

 

【答案】

10 

【解析】

试题分析:设船开始为位置为原点O,灯塔的位置为A,船沿南60°东的方向航行30n mile后的位置为B,

则依题意可知∠AOB=∠ABO=30°∴∠BAO=120°

由正弦定理得

=

∴AB=sin∠AOB=10nmile

即船与灯塔的距离是10nmile。

考点:本题主要考查正弦定理的应用。

点评:解题的关键是正确理解“角”的概念,从而构建三角形,利用正弦定理求解。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网